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Localization of thermal packets and metastable states in the Sinai model
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We consider the Sinai model describing a particle diffusing in a one-dimensional random force field. As
shown by Golosov, this model exhibits a strong localization phenomenon for the thermal packet: all thermal
trajectories starting from the same initial condition in the same sample remain within a finite distance of each
other even in the limit of infinite time. More precisely, he has proved that the disorder averagePt(y) of the
distribution of the relative distancey5x(t)2m(t) with respect to the~disorder-dependent! most probable
position m(t), converges in the limitt→`, towards a distributionPG(y) defined as a functional of two
independent Bessel processes. In this paper, we revisit this question of the localization of the thermal packet.
We first generalize the result of Golosov by computing explicitly the joint distributionP`(y,u) of relative
positiony5x(t)2m(t) and relative energyu5U„x(t)…2U„m(t)… for the thermal packet. Next, we compute
the localization parametersYk , representing the disorder-averaged probabilities thatk particles of the thermal
packet are at the same place in the infinite-time limit, and the correlation functionC( l ) representing the
disorder-averaged probability density that two particles of the thermal packet are at a distancel from each
other. We, moreover, prove that our results forYk and C( l ) exactly coincide with the thermodynamic limit
L→` of the analog quantities computed for independent particles at equilibrium in a finite sample of lengthL.
So even if the Sinai dynamics on the infinite line is always out-of-equilibrium since it consists in jumps in
deeper and deeper wells, the particles of the same thermal packet can nevertheless be considered asymptoti-
cally as if they were at thermal equilibrium in a Brownian potential. Finally, we discuss the properties of the
finite-time metastable states that are responsible for the localization phenomenon and compare with the general
theory of metastable states in glassy systems, in particular as a test of the Edwards conjecture.

DOI: 10.1103/PhysRevE.65.066129 PACS number~s!: 64.60.Ak
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I. INTRODUCTION

The Sinai model@1# of a particle diffusing in a one-
dimensional quenched random force field is one of the s
plest example of a model with quenched randomness
continuum version is defined by the Langevin equation

dx~ t !

dt
52U8@x~ t !#1h~ t ! ~1!

where h(t) is the thermal noise, with correlatio
^h(t)h(t8)&52Td(t2t8), and where the random potenti
U(x) is a Brownian motion presenting the correlations

@U~x!2U~x8!#252sux2x8u ~2!

As a result, the Sinai diffusion exhibits a nontrivial ultraslo
logarithmic behavior, the walker typically moving asx
;(ln t)2. Although this model has been much studied@1,3–
5#, the known analytical results mainly concern the resca
variableX5sx/(T2 ln2t), and its distribution over the disor
der realizations, known as the Kesten distribution. Howev
another important issue concerns the thermal distribution
the position in a given sample.

Golosov@2# has discovered the important phenomenon
localization in the sense that all thermal trajectories star
from the same initial condition remain within a finite di
tance of each other even in the limit of infinite time. Mo
precisely, he has proved that there exists a processm(t),
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independent of the thermal noiseh, such that the distribution
Pt(y) of the relative distancey5x2m(t) averaged over the
realizations of the disorder converges in the limitt→` to-
wards a probability distributionPG(y) defined as the follow-
ing functional

PG~y!5KK e2r (uyu)

E
0

`

dte2r (t)1E
0

`

dte2r(t)LL
$r ,r%

~3!

where^^•••&& denotes the average over the two independ
Bessel processes~i.e., the radial parts of free Brownian mo
tions in three dimension! r (t) and r(t) starting atr (t50)
505r(t50). ~The explicit computation of this functional i
done in Appendix D of the present paper.!

However, the existence of this limit distribution does n
imply that the moments of the random variabley remain
finite in the limit of infinite time. And indeed, all the intege
moments of the relative distance@x2^x(t)&# to the ther-
mally averaged position̂x(t)& diverge in the infinite-time
limit, with the following leading divergence@7,8#:

^@x2^x~ t !&#n&;
T

sn
~T ln t !2n21, ~4!

where ^•••& denotes the thermal average over$h(t)% and
where ••• denotes the disorder average over the rand
potential$U(x)%. This happens because the decay of the d
©2002 The American Physical Society29-1
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CÉCILE MONTHUS AND PIERRE LE DOUSSAL PHYSICAL REVIEW E65 066129
tribution of z5x2^x(t)& is algebraic at large distance a
1/uzu3/2 @8,7#. For n52, the behavior~4! has been measure
numerically in Ref.@9#.

Other quantities characterizing the localization of the th
mal packet are the localization parametersYk(t) representing
the disorder averages of the probabilities thatk independent
particles in the same sample starting from the same in
condition are at the same place at timet. In a given environ-
mentU(x) and for a given initial conditionx0, the probabil-
ity distribution over the thermal noise

P~x,tux0,0![^d„x2x$h,U,x0%~ t !…& ~5!

@wherex$h,U,x0%(t) is the solution of the Langevin equatio
~1!# satisfies the Fokker-Planck equation

] tP~x,tux0,0!52HFPP„~x,tux0,0!…, ~6!

HFP52]x„T]x1U8~x!… ~7!

and the initial conditionP(x,t→0ux0,0)→d(x2x0). So the
localization parameters read

Yk~ t !5E
2`

1`

dx@P~x,tux0,0!#k . ~8!

In Ref. @9#, the parameterY2(t) has been measured nume
cally for a version of the discrete Sinai model in a sem
infinite geometry with binary distribution of the rando
forces. This simulation shows thatY2(t) converges at long
time towards a finite valueY2(`), which decays asT in-
creases~since the temperature broadens the distribution
the thermal packet!.

A generalization ofY2(t) is the correlation function
C( l ,t) representing the disorder average of the probab
that two independent particles in the same sample star
from the same initial condition are at a distancel from each
other at timet,

C~ l ,t !52E
2`

1`

dx@P~x,tux0,0!P~x1 l ,tux0,0!#, ~9!

which is normalized to*0
1`dlC( l ,t)51.

Another question related to the distribution of the therm
packet is the dynamics of a given particle between two tim
tw and (tw1t) in the ‘‘quasiequilibrium regime’’tw→`
with finite t @8#. It was conjectured and checked numerica
in Ref. @8# that the disorder-averaged probability,Q(z,t)
5 limtw→`Q(z,tw1t,tw), of the relative displacement,z

5x(t)2x(tw), for the Sinai model on the infinite line wa
the same asQeq(z,t) obtained as the thermodynamic lim
L→` of QL(z,t) characterizing the equilibrium dynamic
in a finite sample of lengthL. In particular, in the larget
limit, one should recover the statics with two independ
particles at Boltzmann equilibrium@8#. If these assumptions
are true, this means that for the particles of the thermal pa
ets, we should also have a correspondence with the Bo
mann distribution in a Brownian potential on finite sample
lengthL,
06612
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eq~x!5

e2bU(x)

E
0

L

dye2bU(y)

. ~10!

More precisely, it is interesting to compareYk(`) @Eq. ~8!#
andC( l ,`) @Eq. ~9!# with the thermodynamic limit of their
statics counterparts

Yk
eq5 lim

L→`
E

0

L

dx@pL
eq~x!#k, ~11!

Ceq~ l !5 lim
L→`

E
0

L

dxE
0

L

dypL
eq~x!pL

eq~y!. ~12!

Some statistical properties of the Boltzmann distribution~10!
have already been studied in Refs.@11–13#.

In this paper, we reconsider this question of the locali
tion of the thermal packet from the point of view of th
real-space renormalization group~RG! analysis detailed in
Ref. @7#. Within this renormalization picture, at timet, any
particle starting from an initial condition belonging to
renormalized valley will be typically at timet around the
minimumm(t) of this renormalized valley. To study the dis
tribution of a thermal packet, a first step is to consider t
the particles of the packet are at Boltzmann equilibriu
within the renormalized valley they belong to at timet. This
is only an approximation at finite time, since there are a
additional out-of-equilibrium situations for the therm
packet@7#. However, in the limit of infinite time, these out
of-equilibrium situations have vanishing probability@7#, and
the joint distributionP`(y,u) of relative positiony5x(t)
2m(t) and relative energyu5U„x(t)…2U„m(t)… corre-
sponds to an average of Boltzmann distribution over in
nitely deep Brownian valleys. We will compute explicitl
P`(y,u) by a path-integral method. We use the same met
to compute theYk(`) parameters~8! and the correlation
function C( l ) @Eq. ~9!#. On the other hand, we computeYk

eq

andCeq( l ) @Eq. ~12!# and find that they indeed coincide wit
Yk(`) and C( l ,`). This shows that the ensemble of infi
nitely deep valleys gives the same results for the quanti
mentioned above as the thermodynamic limit of the e
semble of finite-size valleys, so that quasiequilibrium in S
nai diffusion and equilibrium in a Brownian potential a
equivalent.

This approach to the localization phenomenon allows
to study in details the disorder-dependent structure of lo
energy eigenstates of the Fokker-Planck operator. Our res
are consistent with the features discussed in Appendix B
Ref. @14# for the related model of one-dimensional rando
hopping Hamiltonian for fermions.

Finally, it is instructive to recast Sinai diffusion into th
general theory of glassy systems. Indeed, in the studies
slowly relaxing systems such as glasses, granular medi
disordered spin models, it is natural to separate the dynam
into two parts: there are ‘‘fast’’ degrees of freedom that ra
idly reach local quasiequilibrium plus a slow nonequilibriu
part. At a given long-timet, the fast motion covers a regio
9-2
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LOCALIZATION OF THERMAL PACKETS AND . . . PHYSICAL REVIEW E65 066129
of phase space which can be defined as a metastable
associated with timet @15#. In Sinai diffusion, this picture
directly applies: the metastable states are the renorma
valleys, within which there is a local Boltzmann equilibrium
Moreover, we obtain that the metastable states satisfy al
properties of the construction@16# as summarized in Ref
@15#. In glassy systems, the Edwards ergodicity conject
@17# consisting in computing dynamic quantities by taki
flat averages over metastable states has given rise to a l
recent studies@15,18–21#. Since Edwards conjecture is us
ally based on the assumption that all the basins of attrac
of the various metastable states have the same size@15#, it is
of course a very strong hypothesis that cannot be true
general but only for special systems with special dynam
@18,21#. In Sinai diffusion with uniform initial condition, the
size of the basin of attraction of a metastable state is given
the spatial length of a renormalized valley: it is thus a ra
dom variable whose distribution is exactly known. As a co
sequence, Edwards conjecture cannot be true in gen
Nevertheless, within the real-space RG~RSRG! approach
@7#, all one-time quantities are effectively computed by a
erages over all metastable states, but with a measure th
not flat, but depends on the quantities and on the prope
of the basins of attraction. So the RSRG approach of
Sinai model represents the simplest example where the
namical study of a glassy system can be faithfully repla
by an average over a set of well-specified metastable st
with a well-defined measure. However, for special quantit
Edwards conjecture can be recovered. For instance, in
paper, we compute the probability distributionP`(y,u) of
the thermal packet, the localization parametersYk(`) @Eq.
~8!# and the correlation functionC( l ,`) @Eq. ~9!# as flat
averages over infinitely deep wells. This is because in
infinitely deep valleys, the statistics of the lower-part of t
Brownian valley is the same for all metastable states.

The paper is organized as follows. In Sec. II, we expl
within the RSRG picture why the distribution of the therm
packet is asymptotically given by an average of Boltzma
distribution over infinitely deep Brownian valleys. In Se
III, we use a probabilistic path-integral method to compu
explicit expressions for the joint probability distributio
P`(y,u). We use the same method to compute the proba
ity distribution of the partition function of an infinitely dee
valley ~Sec. IV!, the localization parametersYk(`) ~Sec. V!,
and the correlation functionC( l ,`) ~Sec. VI!. In Sec. VII,
we consider equilibrium functions in finite samples and co
pute Yk

eq and Ceq( l ) @Eq. ~12!# that are found to coincide
with Yk(`) and C( l ,`). In Sec. VIII, we derive explicit
expressions for the eigenfunctions of the Fokker-Planck
erator. In Sec. IX, we discuss the properties of metasta
stables and compare with the general theory of metast
states in glassy systems. Finally, the Appendices A, B, an
contain technical details used in the text, whereas Appen
D shows that our result forP`(y,u) after integration overu
coincides with the explicit computation of the Golosov fun
tional ~3!.

II. REAL-SPACE RENORMALIZATION GROUP FOR THE
SINAI DIFFUSION

In this section, we briefly recall the principles of the rea
space renormalization group approach to Sinai diffusion@7#
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with special emphasis on the successive levels of approxi
tions.

A. Effective dynamics at large times

Recently we have proposed an approach, based on R
method, which allows us to obtain many exact results for
Sinai model@6,7#. The way to implement the RSRG is ver
direct: one decimates iteratively thesmallest-energy barrier
in the system stopping when the time to surmount the sm
est remaining barrier is of order the time scale of intere
Despite its approximate character, the RSRG yields for m
quantities asymptotically exact results, because the iter
distribution of barriers grows infinitely wide. Indeed, the di
tribution of the rescaled barrier heighth5(F2G)/G con-
verges towards the fixed point

P* ~h!5u~h!e2h, ~13!

where

G5T ln t ~14!

is the renormalization scale associated with the timet.
Within this renormalization picture, at timet, any particle

starting from an initial condition belonging to a renormaliz
valley (F1 ,F2) will be typically at time t around the mini-
mum m(t) of the valley. This simple approximation, calle
‘‘effective dynamics’’ in Ref.@7#, is sufficient to obtainexact
expressions for many quantities, such as for instance
Kesten distribution of the rescaled variableX
5sx(t)/(T2 ln2t).

However, for other quantities, we have already obtain
in Ref. @7# that there are differences between the effect
dynamics and the real dynamics. For instance, persiste
properties of the thermal average^x(t)& are well described
by persistence properties of the effective dynamics cons
ing in jumping between valley bottoms but are very differe
from the persistence properties of a single walker@7#.

B. Boltzmann equilibrium within renormalized valleys

To study the distribution of a thermal packet, we clea
need to go beyond the effective dynamics. A first step is
consider that the particles of the packet are at equilibri
within the renormalized valley they belong to at timet. More
explicitly, this approximation which assumes that the walk
are at Gibbs equilibrium separately in each renormalized
leys at scaleG, can be written as

P~xtux00!.(
VG

1

ZVG

e2bU(x)uVG
~x!uVG

~x0!, ~15!

where the sum is over all the renormalized valleysVG that
are present in the system at the renormalization scalG
5T ln t, and whereuV(x) is the characteristic function of th
valley V, i.e., uV(x)51 if x belongs to the valley and
uV(x)50 otherwise.ZV5*Vdxe2bU(x) represents the Bolt-
zmann normalization over the valleyV.
9-3
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This Boltzmann equilibrium is clearly an excellent a
proximation within the lower part of the valley, i.e., for th
points that are at a finite potential above the minimum of
valley, which have had plenty of time to equilibrate. How
ever, it breaks down further away in the higher part of t
valley, for the points that are at a potential of orderG above
the minimum of the valley, since these points need a time
orderebG;t to equilibrate. However, since these points ha
a weight of ordere2bG in the formula~15!, they do not play
any role for the observables computed in this paper in
limit G→`.

More importantly, the approximation~15! breaks down
whenever out-of-equilibrium situations occur for the therm
packet as we now explain.

C. Out-of-equilibrium situations for a thermal packet

In our previous work@7#, we have already described ra
events where deviations from the effective dynamics sh
up. The most important rare events are of order 1/G and are
of three types as shown in Fig. 7 of Ref. 7. In the events
type ~a!, there are two nearly degenerate minima at therm
equilibrium separated by a barrierG0,G. These events~a!
are thus taken into account well by the Boltzmann equi
rium in each renormalized valley described in the preced
section. The rare events~b! where two tops are nearly dege
erate are on the contrary completely out of equilibrium, sin
the thermal packet will be split in two valleys that are not
equilibrium with each other. Finally, the events~c! where the
valley is being decimated are also out-of-equilibrium even
since the two renormalized valleys atG cannot be considere
to be at thermal equilibrium. All other rare events are
higher order, for instance, the probability that the initial po
is near a top, which will also produce an out-of-equilibriu
splitting of the thermal packet, is of order 1/G2.

D. Conclusion

As a conclusion, the expression~15! is an excellent ap-
proximation for the thermal packets that are not in out-
e
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e

e

l

w

f
al

-
g

e
t

,

f
t

-

equilibrium situations, and within the lower part of the reno
malized valleys, i.e., for the points that are at a fin
potential above the minima of the valleys. This approxim
tion breaks down for the higher parts of the valleys, i.e.,
the points that are at a potential of orderG above the minima
of the valleys, and whenever the thermal packet happen
be in an out-of-equilibrium situation like the events~b! and
~c! described above which appear with probability 1/G. For a
detailed study of systematic corrections to this approxim
tion, and further results, we refer the reader to Fisher@23#.

From now on, in this paper, we will restrict our attentio
to the approximation~15! that becomes asymptotically exa
in the limit G→`. Indeed, in this limit, only the points tha
are at a finite potential above the minima of the valleys ke
a finite weight and all the out-of-equilibrium situations ha
a vanishing probability in the limitG→`. As a consequence
the Boltzmann distribution over an infinite-deep valley e
actly describes the asymptotic dispersion of a thermal pac
More explicitly, the disorder averageP`(y,u) of the joint
probability distribution of the relative positiony5x(t)
2m(t) and the relative energyu5U„x(t)…2U„m(t)… with
respect to the minimum@m(t),U(m(t)# of the valley is
given by

P`~y,u!5K e2bud„u2U1~ uyu!…

E
0

`

dxe2bU1(x)1E
0

`

dxe2bU2(x)L
$U1 ,U2%

,

~16!

where the averagê•••& is over two independent Brownia
trajectoriesU1(x) andU2(x) forming an infinitely deep well,
i.e., a renormalized valley in the limitG→`. We note here
that the minimumm(t) of the valley represents the mo
probable position in each sample~i.e., it is the point where
the probability is the biggest!, but not the thermally average
position ^x(t)&.

Using, the same notations, we obtain the infinite-tim
limit of the localization parametersYk(`) @Eq. ~8!#
Yk~`!5E
2`

1`

dyK S e2bU1(uyu)

E
0

1`

dxe2bU1(x)1E
0

1`

dxe2bU2(x)D kL
$U1 ,U2%

, ~17!

and of the correlation function~9!

C~ l ,`!54E
0

`

dy@P`~y!P`~y1 l !#12E
0

l

dy@P`~ l 2y!P`~y!#54E
0

`

dyK e2bU1(y)2bU1(y1 l )

S E
0

`

dxe2bU1(x)1E
0

`

dxe2bU2(x)D 2L
12E

0

l

dyK e2bU1(y)2bU2( l 2y)

S E
0

1`

dxe2bU1(x)1E
0

1`

dxe2bU2(x)D 2L . ~18!

066129-4



s

-

e

d

u

e

l

f

LOCALIZATION OF THERMAL PACKETS AND . . . PHYSICAL REVIEW E65 066129
We now turn to the explicit computation of these expre
sions.

III. PROBABILITY DISTRIBUTION FOR THE THERMAL
PACKET

A. Expression ofP`„y,u… in terms of path integrals

To define more precisely the average^•••& @Eq. ~16!#
over two independent Brownian trajectoriesU1(x) and
U2(x) forming an infinitely deep well, let VG be the set of
Brownian paths$U(x>0)% starting atU(0)501 in the pres-
ence of absorbing boundaries at 0 andG, and that are con-
ditioned to finish atU5G and not atU50. The formula~16!
is thus defined as

P`~y,u!5 lim
G→`K e2bud„u2U1~ uyu!…

E
0

l G
(1)

dxe2bU1(x)1E
0

l G
(2)

dxe2bU2(x)L ,

~19!

whereU1(x) andU2(x) are two independent Brownian tra
jectories belonging toVG and wherel G

(1) and l G
(2) are the

random times whereU1(x) andU2(x), respectively, first hit
x5G where they are killed. Since the expression is symm
ric in y→2y, we will assumey.0 from now on.

To separate the averages overU1 andU2, it is convenient
to exponentiate the denominator to get

P`~y,u!5 lim
G→`

RG~q!SG~y,u,q!, ~20!

where

RG~q![K expF2qE
0

l G
(2)

dx e2bU2(x)G L
$U2%

~21!

and

SG~y,u,q![K e2bud„u2U1(uyu)…

3expF2qE
0

l G
(1)

dx e2bU1(x)G L
$U1%

. ~22!

We now define the path integral

F [0,G]~u,l uu0![E
U(0)5u0

U( l )5u

DU~x!expF2
1

4sE0

l

dxS dU

dx D 2

2qE
0

l

dxe2bU(x)GQ [0,G]$U%, ~23!

whereQ [0,G]$U(x)% means that there are absorbing boun
aries atU50 and atU5G. The explicit computation of this
path integral is done in Appendix B and yields the final res
@Eq. ~B18!#.

To compute the quantity~21!, we need to consider th
path integral~23! going from the initial potentialu05e to
06612
-

t-

-

lt

the final potentialu5G2e in the limit e→0 and to sum
over the random timel representing the random timel G

(2)

whereU2(x) first hit x5G where it is killed. So we have

RG~q!5N~G!E
0

1`

dl lim
e→0

1

e2
F [0,G]~G2e,l ue! ~24!

up to a normalizationN(G) that ensuresRG(q50)51. The
result for RG(q) is given in Eq.~B25! of Appendix B that
yields in the limitG→`,

R`~q!5
1

I 0S 2

b
Aq

s D . ~25!

Similarly, to compute Eq.~22!, we need to compose two
path integrals of type~23!, the first one going from the initia
potentialu05e to the final potentialu in a time y, and the
second one going from the initial potentialu to the final
potentialG2e in a time l representing the difference (l G

(1)

2y) that we have to sum over, so that we have

SG~y,u,q!5N~G!e2buE
0

1`

dl lim
e→0

1

e2

3F [0,G]~G2e,l uu!F [0,G]~u,yue!. ~26!

The Laplace transform with respect toy of this expression is
given in Eq.~B30! of Appendix B which yields in the limit
G→`

Ŝ`~p,u,q![E
0

1`

dye2pySG~y,u,q!

5
2

bs
e2bu

I n~se2bu/2!

I n~s! S K0~se2bu/2!

2
K0~s!

I 0~s!
I 0~se2bu/2! D , ~27!

where

s5
2

b
Aq

s
, ~28!

n5
2

b
Ap

s
. ~29!

B. Final result for the joint probability distribution P`„y,u…

Using the results~25! and ~27!, the Laplace transform o
the probability distributionP`(y,u) @Eq. ~20!# may now be
expressed as

P̂`~p,u![E
0

1`

dye2pyP`~y,u! ~30!
9-5
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5E
0

`

dqR̀ ~q!Ŝ`~p,u,q!

5be2buE
0

`

dss

3
I n~se2

bu
2 !

I 0~s!I n~s! S K0~se2 bu/2!

2
K0~s!

I 0~s!
I 0~se2bu/2! D . ~31!

In particular, the distribution of the energyu alone reads
~taking into account the two sidesy.0 andy,0)

P`~u!52P̂`~p50,u!

52be2buE
0

`

dss
I 0~se2bu/2!

I 0
2~s!

S K0~se2bu/2!

2
K0~s!

I 0~s!
I 0~se2bu/2! D , ~32!

whereas the distribution of the positiony alone has for
Laplace transform

P̂`~p![E
0

1`

duP̂`~p,u!

52E
0

` ds

sI0~s!I n~s!
E

0

s

dzzIn~z!

3S K0~z!2
K0~s!

I 0~s!
I 0~z! D . ~33!

The Laplace parameterp is present only through the inde
n5(2/b)Ap/s of the Bessel functionI n .

The normalization toP̂`(p50)51/2 for the half space
can be checked using Eqs.~A7! and~A10!. Using Eq.~A15!,
we may expand inn as follows:

P̂`~p!5
1

2
2

2

3
nE

0

`

dzz
K0

3~z!

I 0~z!
1O~n2! ~34!

5
1

2
2

4

3b
Ap

sE0

`

dzz
K0

3~z!

I 0~z!
1O~p!. ~35!

This shows that the probability distributionP`(y) exhibits
the power-law decay

P`~y! }
uyu→}

1

uyu3/2S 2T

3Aps
E

0

`

dzz
K0

3~z!

I 0~z! D , ~36!

making all the integer moments diverging in the limitt→`.
The exponent 3/2 is of course related to the probability
return to the origin of a random walk@8,7#. Indeed, the Bolt-
zmann distribution in a renormalized valley typically deca
06612
f

at large distance ase2bAsy. However, in rare configuration
where the random potentialU(y) happens to be near th
origin U(0) aty, which happens with probability 1/y3/2, then
the Boltzmann distribution has a weight of order 1 aty.
These rare configurations entirely dominate the disorder
erage for largey and are responsible for the power-law dec
@8,7#.

IV. DISTRIBUTION OF THE PARTITION FUNCTION
OF AN INFINITELY DEEP VALLEY

The partition function of the valley can be decomposed
the sum over two independent half valleys

Z`[E
0

1`

dxe2bU1(x)1E
0

`

dxe2bU2(x). ~37!

Using the result~25! for RG(q) @Eq. ~21!#, we obtain that its
probability distribution has for Laplace transform

E
0

1`

dZe2qZP`~Z!5RG
2~q!5

1

I 0
2S 2

b
Aq

s
D . ~38!

It is convenient to introduce the rescaled partition functio

z[
Z`

l T
, ~39!

where

l T5
4T2

s
~40!

represents the thermal length associated with the typ
scale of the extension of the Boltzmann distributione2bU(x)

in a Brownian wellU(x);sAx.
The probability distributionp(z) of the dimensionless

partition functionz has for Laplace transform

E
0

1`

dze2qzp~z!5
1

I 0
2~Aq!

. ~41!

The series expansion~A3! shows that all the positive mo
ments are finite. The leading behavior at largez is indeed
given via Laplace inversion by the first poleq152s1

2 on the
negative real axis, wheres1 is the first zero of the Besse
function J0(s1)50,

p~z! ;
z→`

ze2s1
2z. ~42!

The behavior of Eq.~41! at largeq,

E
0

1`

dze2qzp~z! .
q→`

2pAqe22Aq, ~43!

leads to the following essential singularity at smallz:
9-6
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p~z! ;
z→0

1

z5/2
e21/z. ~44!

V. LOCALIZATION PARAMETERS

To compute the localization parametersYk(`) @Eq. ~17!#
we proceed along the same lines,

Yk~`!52E
0

1`

dy
1

G~k!
E

0

1`

dqqk21R`~q!

3 lim
G→`

K e2kbU1(y)expF2qE
0

l G
(1)

dxe2bU1(x)G L
$U1%

~45!

5
2

G~k!
E

0

1`

dqqk21R`~q! lim
G→`

N~G!

3E
0

G

due2kbu lim
e→0

1

e2
F̂ [0,G]~G2e,l uu!F̂ [0,G]~u,0ue!.

~46!

Using again the result~B18! for F̂ [0,G] we finally get

Yk~`!5
2

G~k! S b2

4
s D k21E

0

`

dzz2k21K0
2~z!

5
ApG2~k!

2GS k1
1

2D S b2

4
s D k21

5
G3~k!

G~2k!
~b2s!k21,

~47!

where we have used again Eqs.~A7! and ~A10!.
The increase ofYk at large k is a consequence of th

average over the disorder, and can be understood by co
ering the averaged probabilityỸk to havek particles at the
minimum of the valley~instead of at the same place b
anywhere in the valley forYk), which is exactly given by the
negative moment of orderk of the partition functionZ` @Eq.
~37!#

Ỹk5K 1

ZkL 5E
0

1`

dZP`~Z!
1

Zk
5

2

G~k! S 1

l T
D kE

0

1`

ds
s2k21

I 0
2~s!

.

~48!

For largek, the dominant behavior comes from the the sm
z behavior~44! of the probability distribution, which yields

Ỹk ;
k→`

S 1

l T
D k

GS k1
1

2D . ~49!
06612
id-

ll

This shows that the behavior at largek of the averageYk is
dominated by very steep valleys having a small partit
function z.

Here we need to make some comments about the rela
with the discrete Sinai model with lattice constanta. For
most quantities, the results obtained for the continuum v
sion correspond to the universal limit where the lattice co
stanta is very small as compared to the thermal lengthl T

;1/(sb2) @Eq. ~40!# representing the typical extension o
the Boltzmann distribution in a Brownian well. For instanc
this is the case for the probability distributionP`(y,u) of the
thermal packet and for the correlation functionC( l ,`). For
the localization parametersYk , however, our result indicate
that the dimensionlessyk parameters of discrete models w
behave as

yk
discrete~`!5

ApG2~k!

2GS k1
1

2D S a

l T
D k21

, ~50!

when k is fixed, in the limit where (a/ l T) is small. But for
fixed (a/ l T), there is a maximal valuekmax beyond which the
result above does not apply anymore and is replaced b
nonuniversal behavior. Indeed, the discreteyk are by defini-
tion smaller than 1. And as explained above, the largk
behavior of Eq.~47! is related to very steep valleys having
small partition functionz, i.e., involving a small number o
sites in discrete models, so that all details of the model w
be important to determine the largek behavior of
yk

discrete(`).
Note also that in the opposite regime where the latt

spacinga is not negligible with the thermal lengthl T ~i.e.,
a; l T or a. l T), there is only a small number of sites that a
really important around the minimum of the valley so th
the discreteness and details of the model will again be v
important. For instance, the behaviors of the localization
rametersYk(`) at zero temperature are highly nonunivers
and depend on many details: in Ref.@9#, the binary distribu-
tion of the random forces induces a lot of minima degene
cies separated by barrier of two bonds that can always
passed even in the the limit of zero-temperature~because the
particle is not allowed to remain on the same site betweet
and t11). Assuming that all degenerate minima have t
same weight, the value ofY2(`) at T50 is found to be
(ln 2)/2 @9#, instead of the 1 one would expect if there we
no residual fluctuations atT50 around a single minimum.

VI. CORRELATION FUNCTION

To compute the correlation functionC( l ,`) @Eq. ~18!#,
we decompose it into
9-7
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C~ l ,`!5 lim
G→`

2E
0

`

dqqE
0

l

dyK e2bU1(y)expF2qE
0

l G
(1)

dxe2bU1(x)G L
$U1%

K e2bU2( l 2y)expF2qE
0

l G
(2)

dxe2bU2(x)G L
$U2%

1 lim
G→`

4E
0

`

dqqK expF2qE
0

l G
(2)

dxe2bU2(x)G L
$U2%

E
0

`

dyK e2bU1(y)2bU1(y1 l )expF2qE
0

l G
(1)

dxe2bU1(x)G L
$U1%

,

~51!

which yields in Laplace transform with respect tol

Ĉ~p,`![E
0

1`

dle2plC~ l ,`!52E
0

`

dqq lim
G→`

S E
0

G

duE
0

1`

dye2pySG~y,u,q! D 2

14E
0

`

dqqR̀ ~q! lim
G→`

N~G!E
0

G

du1e2bu1E
0

G

du2e2bu2F̂ [0,G]~u2 ,puu1! lim
e→0

1

e2
F̂ [0,G]~G2e,0uu2!F̂ [0,G]~u1,0ue!.

~52!
e
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Using the previous result~27! and the expression~B18!

for F̂ [0,G] , we finally get after simplifications

Ĉ~p,`!58E
0

1`

dz1z1I n~z1!K0~z1!

3E
z1

1`

dz2z2Kn~z2!K0~z2!, ~53!

where againp only appears in the indexn @Eq. ~29!# of
Bessel functions.

Expansion inp yields @Eq. ~A15!#

Ĉ~p,`!512
2

b
Ap

s
1O~p!. ~54!

This small-p behavior shows thatC( l ,`) presents at large
distance the same power-law decay with exponent~3/2! as
the probability distributionP`(y) @Eq. ~36!#

C~ l ,`! }
l→`

1

l 3/2S T

Aps
D , ~55!

making again all the integer moments infinite. As explain
after Eq.~36!, this long-range algebraic decay of the me
correlation function comes from rare configurations of t
06612
d

disorder, and is very different from the decay ase2bAs l char-
acterizing the typical correlations. This is thus an expli
example of the important differences that exist in disorde
systems between typical and mean correlations@10#.

VII. COMPARISON WITH EQUILIBRIUM FUNCTIONS
IN LARGE SYSTEMS

In this section, we consider the Boltzmann equilibriu
~10! on a finite system of lengthL to see if, in the thermo-
dynamic limitL→`, we recover the same properties for th
thermal packet as in Sinai diffusion on the infinite line. Som
statistical properties of the Boltzmann distribution~10! have
already been studied in Refs.@11–13#, where in particular
the decay of correlations was shown to be algebraic with
exponent 3/2, for the same reason as discussed above
Eq. ~36!. The Yk

eq have already been computed in Ref.@13#
for free and periodic boundary conditions, but they we
found to be very different even in the thermodynamic lim
L→`, whereas it is usually expected that for physical qua
tities that remain finite in this limit, differences should va
ish. In the following, we compute the equilibrium function
for both boundary conditions and find that they coincide w
each other,@i.e., the result~17! of Ref. @13# is erroneous#.
The thermodynamic limit is thus well defined and indepe
dent of the boundary conditions.
A. Yk
eq parameters at equilibrium

The Yk
eq parameters for free boundary conditions may be rewritten in terms of path integrals as

Yk
f ree~L !5E

0

L

dx
e2kbU(x)

S E
0

L

dye2bU(y)D k ~56!

5
1

G~k!
E

0

1`

dqqk21E
0

L

dx exp@2kbU~x!#expS 2qE
0

L

dye2bU(y)D
~57!
9-8
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5
1

G~k!
E

0

1`

dqqk21E
0

L

dxE
2`

1`

duLE
2`

1`

due2kbuG~uL ,L2xuu!G~u,xu0!, ~58!

where the basic path integralG is

G~u,l uu0!5E
U(0)5u0

U( l )5u

DU~y!expF2
1

4sE0

L

dyS dU

dy D 2

2qE
0

L

dye2bU(x)G . ~59!
e

e
o

di
th

s-

on

n-
It is analogous to the path integral~23! except that here ther
are no boundary conditions atU50 andU5G, and the vari-
ableu is in ]2`,1`@ . From a technical point of view, we
mention here that contrary to the previous works@11–13#
that expand the path-integral~59! upon eigenstates of the th
HamiltonianH52d/du21qe2bu, here we have chosen t
work in Laplace transform with respect to the lengthl to
have a more compact result~C1!. Using Eq.~C1!, we obtain
in Laplace with respect toL

Ŷk
f ree~v![E

0

1`

dLe2vLYk
f ree~L ! ~60!

5
2

G~k! S s
b2

4 D k22E
0

1`

dzz2k21

3FKm~z!E
0

zds

s
I m~s!1I m~z!E

z

`ds

s
Km~s!G2

,

~61!

with

m5
2

b
Av

s
. ~62!

The thermodynamic limitL→` is obtained as

lim
L→`

Yk
f ree~L !5 lim

v→0
@vŶk

f ree~v!# ~63!

5
2

G~k! S s
b2

4 D k21E
0

1`

dzz2k21K0
2~z!

~64!

5
ApG2~k!

2GS k1
1

2D S b2

4
s D k21

, ~65!

in agreement with Eq.~19! of Ref. @13#.
We now consider periodic boundary conditions, and in

cate the modifications that appear. Taking into account
the probability to haveU(L)5U(0) is (1/A4psL), we have
in terms of the path integral~59!,
06612
-
at

Yk
periodic~L !5

A4psL

G~k!
E

0

1`

dqqk21

3E
0

L

dxE
2`

1`

due2kbu

3G~0,L2xuu!G~u,xu0!. ~66!

So here, it is simpler to compute the following Laplace tran
form

yk~v![E
0

1`

dLe2vLS Yk
periodic~L !

AL
D ~67!

5
8Ap

bAsG~k!
S s

b2

4 D k21E
0

1`

dzz2k21

3FKm
2 ~z!E

0

zds

s
I m

2 ~s!1I m
2 ~z!E

z

`ds

s
Km

2 ~s!G . ~68!

The thermodynamic limitL→` is then obtained as

lim
L→`

Yk
periodic~L !5 lim

v→0
S Av

Ap
yk~v!D ~69!

5
ApG2~k!

2GS k1
1

2D S b2

4
s D k21

, ~70!

contrary to the erroneous result in Eq.~17! of Ref. @13#. Our
result thus coincides with Eq.~65! concerning the equilib-
rium with free boundary conditions and with Eq.~47! con-
cerning the localizations parameters for Sinai diffusion
the infinite-line.

B. Two-point correlation Ceq
„ l … at equilibrium

Similarly, the two-point correlation for free boundary co
ditions may be expressed in terms of the path-integral~59!
9-9
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CL
f ree~ l !52E

0

L2 l

dx@pL
eq~x!pL

eq~x1 l !#52E
0

1`

dqqE
0

L2 l

dxE
0

1`

dqqexp@2bU~x!2bU~x1 l !#expS 2qE
0

L

dye2bU(x)D
~71!

52E
0

L2 l

dxE
0

1`

dqqE
2`

1`

du1E
2`

1`

du2e2bu12bu2E
2`

1`

duLG~uL ,L2x2 l uu2!G~u2 ,l uu1!G~u1 ,xu0! ~72!
fi-

-

l-
th
so that in double Laplace with respect tol andL we get

Ĉf ree~p,v![E
0

1`

dLe2vLE
0

L

dle2plCL
f ree~ l !

5
32

b2s
E

0

1`

dz1z1I n8~z1!FKm~z1!E
0

z1ds

s
I m~s!

1I m~z1!E
z1

`ds

s
Km~s!G E

z1

1`

dz2z2Kn8~z2!

3FKm~z2!E
0

z2ds

s
I m~s!1I m~z2!E

z2

`ds

s
Km~s!G ,

~73!

with n85(2/b)A(p1v)/s. The thermodynamic limitL
→` is obtained as

lim
L→`

ĈL
f ree~p![ lim

L→`
E

0

L

dle2plCL~ l ! ~74!

5 lim
v→0

@vĈf ree~p,v!#

58E
0

1`

dz1z1I n~z1!K0~z1!
06612
3E
z1

1`

dz2z2Kn~z2!K0~z2! ~75!

and thus coincides with the result~53! for correlation of two
particles of the thermal packet in Sinai diffusion on the in
nite line. It is shown in Eq.~C5! of Appendix ~C! that peri-
odic boundary conditions also yield the same result~75!.

C. Probability distribution of the partition function

The probability distribution of the partition function,

ZL5E
0

L

dxe2bU(x), ~76!

has already been computed in Ref.@24#, but to compare with
our result~37! for the infinitely deep valley, we need to con
sider the modified partition function

ZL5E
0

L

dxe2b[U(x)2Umin] , ~77!

whereUmin is the minimum ofU(x) for 0<x<L. Using the
notations of Eq.~23!, the Laplace transform of the probabi
ity distribution PL(Z) can be expressed in terms of pa
integrals as
P̂L~q![E
0

1`

dZe2qZPL~Z!5E
2`

0

du0E
u0

1`

duLE
0

L

dx0 lim
e→0

1

e2EU(0)50

U(x0)5u01e

DU~x!expF2
1

4sE0

L

dxS dU

dx D 2

2qE
0

L

dxe2b[U(x)2u0] GQ [u0 ,1`]$U~x!%E
U(x0)5u01e

U(L)5uL DU~x!expF2
1

4sE0

L

dxS dU

dx D 2

2qE
0

L

dxe2b[U(x)2u0] GQ [u0 ,1`]$U~x!%. ~78!

The change of functionalV(x)5U(x)2u0 leads to
9-10
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P̂L~q!5E
0

1`

dv0E
0

1`

dvLE
0

L

dx0 lim
e→0

1

e2EV(0)5v0

V(x0)5e

DU~x!expF2
1

4sE0

L

dxS dV

dxD 2

2qE
0

L

dxe2bV(x)GQ [0,1`]$U~x!%E
V(x0)5e

V(L)5vLDV~x!expF2
1

4sE0

L

dxS dV

dxD 2

2qE
0

L

dxe2bV(x)GQ [0,1`]$U~x!% ~79!

5sE
0

1`

dv0E
0

1`

dvLE
0

L

dx0 lim
e→0

1

e2
F [0,1`]~e,x0uv0!F [0,1`]~vL ,L2x0ue!, ~80!
m
n

ic

p
he
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which yields in Laplace with respect to the lengthL, using
Eq. ~B18!,

E
0

1`

dLe2vLP̂L~q!

5sF lim
e→0

1

eE0

1`

dvF̂ [0,1`]~e,vuv !G2

~81!

5F 2

bAsI mS 2

b
Aq

s D E0

sdz

z
I m~z!G 2

, ~82!

wherem has been defined in Eq.~62!. Again, the thermody-
namic limit L→` is obtained as

P̂`~q!5 lim
v→0

S vE
0

1`

dLe2vLP̂L~q! D ~83!

5
1

I 0
2S 2

b
Aq

s D , ~84!

which coincides with the result~38! for the infinitely deep
valley. It is of course straightforward to generalize this co
putation to obtain the result that the joint distributio
P`(y,u) @Eq. ~31!# also coincides with the thermodynam
limit L→` of the finite-size joint distribution of (x2xmin)
and (u2Umin), whereUmin is the minimum ofU(x) for 0
<x<L andxmin is the position of this minimum.

D. Conclusion

The conclusion of this section is that the statistical pro
erties of the thermal packet for the Sinai diffusion in t
infinite time limit exactly coincide with the thermodynam
limit L→` of the statistical properties concerning indepe
dent particles at Boltzmann equilibrium in a sample of s
L, with no dependence on the boundary conditions.

VIII. LOCALIZATION PROPERTIES OF
FOKKER-PLANCK EIGENFUNCTIONS

As discussed in Sec. II, the approximation~15! becomes
asymptotically exact in the limitG→`. It is thus interesting
06612
-

-

-
e

to explore the consequences of this approximation for
eigenfunctions of the Fokker-Planck operator.

A. Recall of some exact results

To discuss the properties of eigenvalues and eigenfu
tions of the Fokker-Planck equation~7!, it is more conve-
nient to use the well-known transformation into a
imaginary-time Schro¨dinger equation via the introduction o
the Green function

G~x,tux0,0!5e~b/2!(U(x)2U(x0))P~x,tux0,0!, ~85!

which satisfies

] tG~x,tux0,0!52HSG~x,tux0,0!, ~86!

HS52T]x
21F 1

4T
U8~x!22

1

2
U9~x!G , ~87!

with the initial conditionG(x,tux0,0)→d(x2x0). This is the
standard form for the Schro¨dinger operatorHS associated
with to a diffusion process. It can be factorized asHS
5TQ†Q with Q5]x1U8(x)/(2T) and Q†52]x
1U8(x)/(2T), and has thus a real positive spectrum. W
consider the case of a very large but finite system where
spectrum of energiesEn is discrete. The Fokker-Planck op
eratorHFP is non-Hermitian but has the same real positi
spectrum, with right and left eigenfunctionsFn

R(x) and
Fn

L(x) associated withEn . They are related to the eigen
functionscn(x) of the Schro¨dinger operator by

Fn
R~x!5e2U(x)/(2T)cn~x!, ~88!

Fn
L~x!5eU(x)/(2T)cn~x!. ~89!

The expansion upon Fokker-Planck eigenfunctions n
reads

P~xtux00!5(
n

Fn
R~x!Fn

L~x0!e2Ent. ~90!
9-11
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The ground-staten50 has of course for energyE050
and corresponds to the relaxation towards Boltzmann e
librium so that the left and right ground state eigenvect
are simply given by

F0
L~x!51/AZtot, ~91!

F0
R~x!5e2U(x)/T/AZtot, ~92!

whereZtot5*dxe2U(x)/T is the normalization over the finite
large system.

B. Construction of an orthonormalized set of eigenfunctions
for the approximate dynamics

In this section, we consider the approximation~15! for the
dynamics as defining a new dynamics denoted by tilde,

P̃~xtux00![(
VG

1

ZVG

e2bU(x)uVG
~x!uVG

~x0! ~93!

and try to expand it upon a basis of eigenfunctions as in
~90!,

P̃~xtux00!5(
n

F̃n
R~x!F̃n

L~x0!e2Ẽnt. ~94!

At time t, the states in Eq.~94! with energiesẼn.1/t are
negligible in the sum, and correspond in the RSRG pictur
bonds that have been already decimated. The staten will
become negligible in the sum~100! at a timetn;1/Ẽn , and
this disappearance in the sum corresponds, in the RSRG
ture, to a decimation at scaleGn5T ln tn52T ln Ẽn . The
low-lying energiesẼn are thus exactly determined by th
large RG scalesGn at which decimations occur in the system
Of course in the real system, in the case of near degenera
of neighboring bonds, slight shifts in these levels will occ

To determine now the eigenfunctions, we consider w
happens upon this decimation atGn . We may consider tha
the time exponential factor associated with leveln has

changed frome2Entn
2

51 to e2Entn
1

50 while none of the
others decaying exponentials in Eq.~94! have changed~since
time scales are well separated!. The differenceP̃(xtn

2ux00)

2 P̃(xtn
1ux00) is thus equal toF̃n

R(x)F̃n
L(x0) On the other

hand, from the RSRG point of view, what happens is sim
a decimation where two valleysV1 andV2 have merged into
a single oneV8. Thus we get using Eq.~93!,

F̃n
R~x!F̃n

L~x0!5e2U(x)/T

3F uV1
~x!uV1

~x0!

ZV1

1
uV2

~x!uV2
~x0!

ZV2

2
@uV1

~x!1uV2
~x!#@~uV1

~x0!1uV2
~x0!#

ZV1
1ZV2

G .

~95!
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One sees that indeed the right-hand side has the nice p
erty to factorize into a function ofx and one ofx0 and thus
one can determine unambiguouslyF̃n

R(x) and F̃n
L(x0) by

fixing the constant usingF̃n
R(x)5e2U(x)F̃n

L(x) from Eq.
~89!, which leads to the eigenset forn>1,

F̃n
L~x!5A ZV1

ZV2

ZV1
1ZV2

F 1

ZV1

uV1
~x!2

1

ZV2

uV2
~x!G , ~96!

F̃n
R~x!5e2U(x)/TF̃n

L~x!. ~97!

One can check on Eq.~97! that the eigenfunctions hav
all the correct normalization and orthogonality propertie
First, one has forn>1,

E dxF̃n
R~x!50. ~98!

This ensures the normalization of the probability distributi
P̃(xtux00) for all t andx0 as it should,

E dxP̃~xtux00!5E dxF0
R~x!F0

L~x0!51. ~99!

Second, one finds the correct normalization

E dxF̃n
L~x!F̃n

R~x!5E dxe2U(x)/T@Fn
L~x!#251.

~100!

Furthermore, one can also check that the set of w
functions exactly forms an orthonormalized set

E dxF̃n
L~x!F̃m

R~x!5dn,m . ~101!

So the disorder-dependent form~97! for the eigenfunc-
tions have all the good properties to represent via the exp
sion ~94! the dynamics defined in Eq.~93!. One may even
define the following effective Fokker-Planck operator

H̃FP5(
n

ẼnuF̃n
R&^F̃n

Lu ~102!

as an approximation toHFP @Eq. ~7!#.

C. Qualitative properties of eigenfunctions

We can now discuss the typical shape of an eigenstate
compare with the qualitative features discussed in the
pendix B of Ref. @14# for the related model of one
dimensional random-hopping Hamiltonian for fermions~ex-
cept that here there is no particle-hole symmetry and ther
no need to distinguish even and odd sites! :

~i! An eigenstate~97! has two peaks corresponding to th
minima of valleysV1 andV2. The eigenstate has a significa
value in finite regions of orderl T;T2/s @Eq. ~40!# around
these two peaks.
9-12
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~ii ! These two peaks are separated by a distance of o
G2;(ln E)2.

~iii ! Away from one of these bumps but within the valle
i.e., for distancer<G2, the decay of the wave functio
Fn

R(x) is governed by the Boltzmann factore2bU(r ) that
typically behaves ase2cAr . In particular, on the edges of th
valleys wherer;G2, this gives an amplitude of ordere2c8G.

~iv! Beyond the involved two valleys, within our simpl
approximation~97! with u functions on the edges of valleys
the eigenstate is simply zero.

So to estimate the decay of the eigenstate for distan
r>G2, we must take into account, as was in Appendix B
Ref. @14#, the fact that the two points are typically separat
by a numberr /G2 of valleys, and that the overlap betwee
two neighboring valleys is not exactly zero but of ord
e2c9G. And thus a perturbation theory yields that the dec

for distancesr>G2 behaves ase2c9
r
G. We thus recover tha

the localization length in the sense of asymptotic exponen
decay of the associated quantum wave function thus beh
asl(E);G;(2T ln E) whereas the typical extension of a
eigenstate behaves as the typical distance between the
peaks, which behaves asl (E);G2;(2T ln E)2 and directly
gives the low-energy behavior of the integrated density
statesN(E);1/l (E);1/(2T ln E)2 @5#. We note that the
length l (E) is the one that appears in the averaged Gr
function~85! as computed in Ref.@22# for the lattice fermion
model with random hopping, and computed in Ref.@7# for
the present problem.

So the disorder-dependent form~97! for the eigenfunc-
tions, even if only approximate near the edges of the valle
give a good insight into the properties of low-energy eige
functions. For a study of systematic corrections to this
proximation, and further results on the statistics of wa
functions far in the tails, we refer the reader to Fisher@23#.

IX. PROPERTIES OF METASTABLE STATES IN SINAI
DIFFUSION

In the slowly relaxing systems such as glasses, gran
media or disordered spin models, the notion of metasta
states is an important and ubiquitous concept. In particu
the Edwards ergodicity conjecture@17# consisting in comput-
ing dynamic quantities by taking flat averages over me
stable states has given rise to a lot of recent studies@15,18–
21#. However, as discussed in details in Ref.@15#, truly
metastable stables only exist in mean-field approximation
in the zero-temperature limit, and thus to use this concep
finite temperature in finite-dimensional systems, one need
consider metastable states with finite lifetimes. In this c
text we find instructive to consider what happens in Si
diffusion from the point of view of metastable states and
compare with the general theory of glassy systems.

A. Identification of the set of metastable states
at a given time t

In the general theory of glassy systems, it is natura
separate the dynamics into two parts: there are ‘‘fast’’
grees of freedom which rapidly reach local quasiequilibriu
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plus a ‘‘slow’’ nonequilibrium part. At a given long timet,
the fast motion covers a region of phase-space which ca
defined as a metastable state associated with timet @15#. To
Sinai diffusion, this picture directly applies. The formu
~15! leads to a very direct identification of metastable stat
at time t, the metastable states~i! are given by all the renor-
malized valleysVG

( i ) that exist at scaleG5T ln t. Moreover,
the formula~15! exactly corresponds to the construction
Gaveau, Schulman, and Lesne@16# as summarized in Ref
@15#, where the evolution operatore2tHFP is replaced by a
projector onto the subspace of states~i! having an eigenvalue
En,1/t,

e2tHFP;(
i

uPi&^Qi u, ~103!

with the following identifications: the right eigenvectors re

Pi~x!5
e2bU(x)

E
VG

( i )
dye2bU(x)

u~xPVG
( i )! ~104!

and thus they have indeed the properties of being posit
normalized and not zero in nonoverlapping regions of spa
The left eigenvectors read

Qi~x!5u~xPVG
( i )!. ~105!

They are thus indeed one within the support ofPi(x), and
zero everywhere else. Moreover, the fast degrees of free
have indeed converged towards a local Boltzmann equ
rium within the metastable state represented by the renorm
ized valley~104!.

B. One-time dynamical quantities as averages over the set
of metastable states at a given timet

We now consider the question of Edwards conjecture
Sinai diffusion, within the RSRG approach@7#, all one-time
quantities are effectively computed by averages over
renormalized valleys, with a measure that is nota priori flat,
but depends on the computed quantity. In particular, fo
uniform initial condition, the spatial length of a renormalize
valley exactly represents the size of the basin of attraction
this renormalized valley. So the rescaled sizel5s l /G2

5s l /(T ln t)2 of the basins of attraction of the metastab
states is a random variable distributed with the probabi
distribution

D~l!5P* ~• !l* P* ~• !, ~106!

where P* (l) is the distribution of the rescaled length o
bonds@7#. More explicitly, its Laplace transform reads

D̂~p!5@ P̂* ~p!#25
1

cosh2Ap
~107!

and inversion yields@25#
9-13
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D~l!5 (
n52`

1` F2p2S n1
1

2D 2

l21Ge2lp2(n11/2)2 ~108!

5
2

Apl3/2 (
m52`

1`

~21!m11m2e2m2/l. ~109!

Since Edwards conjecture is usually based on the assu
tion that all the basins of attraction of the various metasta
states have the same size@15#, it is of course a very strong
hypothesis that cannot be true in general but only for spe
systems with special dynamics@18,21#. In Sinai diffusion,
the metastable states do not have the same size and
Edwards conjecture cannot be satisfied in general.

However, for special quantities, Edwards conjecture
be recovered. For instance, in this paper, we have comp
the probability distributionP`(y,u) of the thermal packet
the localization parametersYk(`) @Eq. ~8!# and the correla-
tion functionC( l ,`) @Eq. ~9!# as flat averages over infinitel
deep wells. This is because in the limitG→`, only the lower
part of the Brownian valley is important, and thus there is
dependence on the size of the valley for these quantities
cerning the thermal packet.

C. Hierarchical organization of metastable states associated
with different times

In the case of Sinai diffusion, one knows much more th
the one-time description in terms of metastable states.
deed, the expressions~97! for the Fokker-Planck eigenvec
tors contain in fact all the information on the changes in ti
of the set of metastable states. They have an obvious hi
chical organization: two eigenstates can be either disjoin
nested~i.e., one is included in another!. And the evolution in
time is described by the RSRG procedure. This is why tw
time aging quantities can be computed within the RS
method@7,26#.

APPENDIX A: USEFUL PROPERTIES OF BESSEL
FUNCTIONS

The Bessel functionsI n(z) and Kn(z) are two linearly
independent solutions of

z2f 9~z!1z f8~z!2~z21n2! f ~z!50. ~A1!

Series expansion inz reads

I 0~z!5 (
k50

1`
1

~k! !2 S z

2D 2k

, ~A2!

K0~z!52I 0~z!ln
z

2
1 (

k50

1`
c~k11!

~k! !2 S z

2D 2k

, ~A3!

and

I n~z!5 (
k50

1`
1

k!G~n1k11! S z

2D n12k

, ~A4!
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Kn~z!5
p

2

I 2n~z!2I n~z!

sinpn
. ~A5!

The Wronskian property

I n~z!Kn8~z!2I n8~z!Kn~z!52
1

z
~A6!

gives

E
z

1`

ds
1

sI0
2~s!

52FK0~s!

I 0~s! G
z

1`

5
K0~z!

I 0~z!
, ~A7!

E
z

1`

ds
K0~s!

sI0
3~s!

52
1

2 FK0
2~s!

I 0
2~s!

G
z

1`

5
K0

2~z!

2I 0
2~z!

, ~A8!

E
z

1`

ds
K0

2~s!

sI0
4~s!

52
1

3 FK0
3~s!

I 0
3~s!

G
z

1`

5
K0

3~z!

3I 0
3~z!

. ~A9!

Another useful integral is for anyk.0,

E
0

`

dzz2k21K0
2~z!5

ApG3~k!

4GS k1
1

2D . ~A10!

Equation~A1! leads to

d

dsFs2

2
$I 0

2~s!2@ I 08~s!#2%G5sI0
2~s!, ~A11!

d

dsFs2

2
~K0

2~s!2@K08~s!#2!G5sK0
2~s!, ~A12!

d

dsFs2

2
@ I 0~s!K0~s!2I 08~s!K08~s!#G

5sI0~s!K0~s!. ~A13!

Differentiation with respect to order

I n~z!5I 0~z!2nK0~z!1O~n2!, ~A14!

Kn~z!5K0~z!1O~n2!. ~A15!

APPENDIX B: EXPLICIT COMPUTATIONS
FOR INFINITELY DEEP VALLEYS

1. Explicit expression for F
†0,G‡

„u,xzu0…

The path integralF [0,G] (u,xuu0) defined in Eq.~23! can
be obtained via the Feynman-Kac formula. Indeed, as a fu
tion of the variables (u,x), it satisfies the imaginary-time
Schrödinger equation

]xF5s]u
2F2qe2buF ~B1!

with the initial condition atx50,
9-14
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F~u,0!5d~u2u0! ~B2!

and the absorbing boundary conditions atu50 andu5G,

F~0,x!50, ~B3!

F~G,x!50. ~B4!

The Laplace transform with respect tox,

F̂~u,p!5E
0

1`

dxe2pxF~u,x!, ~B5!

satisfies the system

s]u
2F̂2qe2buF̂2pF̂52d~u2u0!, ~B6!

F̂~0,p!50,

F̂~G,p!50.

Let us introduce two linearly independent solutionsf1(u,p)
andf2(u,p) of the equation.

s]u
2F̂2qe2buF̂2pF̂50. ~B7!

In terms of the new variables,

z5
2

b
Aq

s
e2bu/2, ~B8!

n5
2

b
Ap

s
, ~B9!

the equation becomes

z2F̂9~z!1zF̂8~z!2~z21n2!F̂~z!50. ~B10!

Two linearly independent solutions of this equation are
Bessel functionsI n(z) andKn(z), so we choose

f1~u,p!5I n~z!5I (2/b)Ap/sS 2

b
Aq

s
e2bu/2D , ~B11!

f2~u,p!5Kn~z!5K (2/b)Ap/sS 2

b
Aq

s
e2bu/2D , ~B12!

and the Wronskian of these two solutions reads

w5f1~u!f28~u!2f2~u!f18~u!5
b

2
. ~B13!

We now introduce the function

E~u,v,p!5
1

w
@f1~u,p!f2~v,p!2f2~u,p!f1~v,p!#

~B14!

and express two solutions of Eq.~B7! which vanish respec
tively at 0 andG as
06612
e

F2~u,p!5E~0,u,p!, ~B15!

F1~u,p!5E~u,G,p!. ~B16!

Their Wronskian reads

W~p!5F28 ~u,p!F1~u,p!2F2~u,p!F18 ~u,p!

5E~0,G,p!. ~B17!

The solution of the system~B6! now reads

F̂ [0,G]~u,puu0!5
F2„min~u,u0!,p…F1~max~u,u0!,p!

sW~p!

5
E„0,min~u,u0!,p…E„max~u,u0!,G,p…

sE~0,G,p!
.

~B18!

2. Explicit expression for R`„q…

Specializing Eq.~B18! to the caseu05e and u5G2e
and expanding

E~0,e,p!5e1O~e2!, ~B19!

E~G2e,G,p!5e1O~e2!, ~B20!

we get

lim
e→0

1

e2
F̂ [0,G]~G2e,pue!5

1

sE~0,G,p!
. ~B21!

Then Eq.~24! yields

RG~q!5N~G! lim
e→0

1

e2
F̂ [0,G]~G2e,p50ue! ~B22!

5
N~G!

sE~0,G,p50!
. ~B23!

Using the expansions~A3! of Bessel functions, the normal
ization conditionRG(q→0)51 determines the normaliza
tion

N~G!5sG, ~B24!

so that the final result reads

RG~q!5

bG

2

I 0~s!K0~se2bG/2!2K0~s!I 0~se2bG/2!
~B25!

with s5(2/b)Aq/s.

3. Explicit expression for SG„y,u,q…

We now turn to the evaluation of Eq.~26! in Laplace with
respect toy
9-15
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ŜG~p,u,q!

[E
0

1`

dye2pySG~y,u,q! ~B26!

5N~G!e2bu lim
e→0

S 1

e2
F̂ [0,G]~G2e,0uu!F̂ [0,G]~u,pue!D .

~B27!

Using

lim
e→0

S 1

e
F̂ [0,G]~u,pue! D5

E~u,G,p!

sE~0,G,p!
~B28!

and

lim
e→0

S 1

e
F̂ [0,G]~G2e,0uu! D5

E~0,u,0!

sE~0,G,0!
, ~B29!

we get

ŜG~p,u,q!5
G

sE~0,G,0!
e2buE~0,u,0!

E~u,G,p!

E~0,G,p!
.

~B30!

In the limit G→`, using the expansions~A5! we get

lim
G→`

S E~u,G,p!

E~0,G,p! D5
I n~~2/b!Aq/se2bu/2!

I n~~2/b!Aq/s!
~B31!

and

lim
G→`

S G

E~0,G,0! D5
1

I 0~~2/b!Aq/s!
, ~B32!

so that we obtain the formula~27! given in the text.

APPENDIX C: COMPUTATION OF EQUILIBRIUM
FUNCTIONS IN LARGE SYSTEMS

1. Basic path integral

The Laplace transform with respect tol of the basic path
integral ~59! satisfies the same equation as Eq.~B6! but the
boundary conditions are now atu→6`. So using again the
notations~B9! the solution reads@Eq. ~B18!#

Ĝ~u,puu0!5
2

bs

3KnS 2

b
Aq

s
e2(b/2)min(u,u0)D

3I nS 2

b
Aq

s
e2(b/2)max(u,u0)D . ~C1!

2. Two-point correlation Ceq
„ l … for periodic boundary

conditions

For periodic boundary conditions, the two-point corre
tion may be expressed in terms of the path integral~59! as
06612
-

CL
periodic~ l !52A4psLE

0

L2 l

dxE
0

1`

dqq

3E
2`

1`

du1e2bu1E
2`

1`

du2e2bu2

3G~0,L2x2 l uu2!G~u2 ,l uu1!G~u1 ,xu0!,

~C2!

which yields in Laplace transform

ĉ~p,v![E
0

1`

dLe2vLE
0

L

dle2plS CL
f ree~ l !

AL
D ~C3!

5
16A4ps

bs E
0

1`ds

s E0

1`

dz1z1I n8~z1!

3@Km~z1!I m~s!u~z12s!1I m~z1!Km~s!u~s2z1!#

3E
z1

1`

dz2z2Kn8~z2!

3@Km~z2!I m~s!u~z22s!1I m~z2!Km~s!u~s2z2!#
~C4!

with m5(2/b)Av/s and n85(2/b)A(p1v)/s. The ther-
modynamic limitL→` is obtained as

Ĉ`
periodic~p!5 lim

v→0
FAv

Ap
ĉ~p,v!G58E

0

1`

dz1z1I n~z1!K0~z1!

3E
z1

1`

dz2z2Kn~z2!K0~z2!. ~C5!

APPENDIX D: RELATION WITH GOLOSOV THEOREM

As explained in the Introduction, the theorem of Golos
@2# states thatP`(y) is equal toPG(y) given by Eq.~3!. The
purpose of this appendix is to show this formula of Golos
gives the same result as Eq.~33! obtained in the text. We firs
rewrite Eq.~3! as

PG~y!5 lim
L→`

S E0

`

dqKK expS 2qE
0

L

dte2br(t)D LL
$r%

~D1!

KK expF2br ~y!2qE
0

L

dte2br (t)G LL
$r %

D . ~D2!

Since the Bessel processes$r (t)% and$r(t)% may be con-
sidered as radial parts of free three-dimensional Brown
motion, the Feynman-Kac formula yields

K K expS 2qE
0

L

dte2br(t)D LL
$r%

5E
0

1`

4pRL
2dRLGp~RL ,Lu0!, ~D3!
9-16
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KK expF2br ~y!2qE
0

L

dte2br (t)G LL
$r %

5E
0

1`

4pRL
2dRLE

0

1`

4pR2dR

3Gq~RL ,L2yuR!e2bRGq~R,yu0!, ~D4!

where Gq(R,l u0) satisfies the imaginary-time Schro¨dinger
equation

] lGq~R,l uR0!52HqGq~R,l uR0!, ~D5!

where

Hq52
s

R2

]

]R S R2
] f

]RD1qe2bR ~D6!

is the radial restriction of the corresponding thre
dimensional Hamiltonian. We have, moreover, the init
condition

Gq~R,l→0uR0!→ 1

4pR2
d~R2R0!. ~D7!

The identity

1

R2

]

]R S R2
] f

]RD5
1

R

]2

]R2
~R f!

leads to the change of function

gq~R,l uR0!54pRR0Gq~R,l uR0!. ~D8!

This new functiongq satisfies the one-dimensional Schr¨-
dinger equation

] lgq~R,l uR0!52hqgq~R,l uR0!, ~D9!

hq52s
d2

dR2
1qe2bR, ~D10!

on the semi-infinite lineR>0 with the absorbing boundar
condition atR50,

gq~R50,l uR0!50 ~D11!

and with the initial condition
ro

e

06612
-
l

gq~R,l→0uR0!→d~R2R0!. ~D12!

By comparison with Eqs.~B1!,~B2!,~B4!, we immediately
obtain

gq~R,l uR0!5 lim
G→`

F [0,G]~R,l uR0!. ~D13!

Since the functionGq(R,l u0) has to be obtained as the lim

Gq~R,l u0!5
1

R
lim
e→0

S 1

e
gq~R,l ue! D , ~D14!

we have, using Eqs.~B9! and ~A5!,

^e2q*0
`dte2r(t)

&$r%

5 lim
L→`

E
0

`

dRRlim
e→0

S 1

e
gq~R,Lue! D ~D15!

5 lim
n→0F 4/~bn!2

I nS 2

b
Aq

s D E0

`

dRRInS 2

b
Aq

s
e2b(R/2)D G

~D16!

5
1

I 0S 2

b
Aq

s
D , ~D17!

in agreement with Eq.~25!.
Similarly, we compute the Laplace transform with respe

to y

E
0

1`

dye2pyK e2br (y)expS 2qE
0

1`

dte2br (t)D L
$r %

~D18!

5 lim
s→0

FsE
0

`

dRRE
0

`

dR8ĝq~R,suR8!e2bR8 ~D19!

3 lim
e→0

S 1

e
ĝq~R8,pue! D G , ~D20!

which gives the same result as Eq.~27!.
@1# Y. G. Sinai, Theor. Probab. Appl.27, 247 ~1982!.
@2# A. O. Golosov, Commun. Math. Phys.92, 491 ~1984!.
@3# H. Kesten, Physica AA138, 299 ~1986!.
@4# B. Derrida, J. Stat. Phys.31, 433 ~1983!.
@5# J. P. Bouchaud, A. Comtet, A. Georges, P. Le Doussal, Eu

phys. Lett.3, 653 ~1987!; Ann. Phys.~N.Y.! 201, 285 ~1990!.
@6# D. S. Fisher, P. Le Doussal, and C. Monthus, Phys. Rev. L

80, 3539~1998!.
-

tt.

@7# P. Le Doussal, C. Monthus, and D. S. Fisher, Phys. Rev. E59,
4795 ~1999!.

@8# L. Laloux and P. Le Doussal, Phys. Rev. E57, 6296~1998!.
@9# J. Chave and E. Guitter, J. Phys. A32, 445 ~1999!.

@10# D. S. Fisher, Phys. Rev. B50, 3799~1994!; 51, 6411~1995!.
@11# K. Broderix and R. Kree, Europhys. Lett.32, 343 ~1995!.
@12# D. G. Shelton and A. M. Tsvelik, Phys. Rev. B57, 14242

~1998!.
9-17



e

et

v.

.
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