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Localization of thermal packets and metastable states in the Sinai model

Cecile Monthus
Service de Physique Thique, CEA Saclay, 91191 Gif-sur-Yvette, France

Pierre Le Doussal
CNRS-Laboratoire de Physique Theque de I'Ecole Normale Supeure, 24 rue Lhomond, F-75231 Paris, France
(Received 20 February 2002; published 28 June 2002

We consider the Sinai model describing a particle diffusing in a one-dimensional random force field. As
shown by Golosov, this model exhibits a strong localization phenomenon for the thermal packet: all thermal
trajectories starting from the same initial condition in the same sample remain within a finite distance of each
other even in the limit of infinite time. More precisely, he has proved that the disorder awef@geof the
distribution of the relative distancg=x(t) —m(t) with respect to thgdisorder-dependenmost probable
position m(t), converges in the limit—o, towards a distributiorPs(y) defined as a functional of two
independent Bessel processes. In this paper, we revisit this question of the localization of the thermal packet.
We first generalize the result of Golosov by computing explicitly the joint distribuBofy,u) of relative
positiony=x(t) —m(t) and relative energy=U (x(t))—U(m(t)) for the thermal packet. Next, we compute
the localization parametel§,, representing the disorder-averaged probabilities kipsrticles of the thermal
packet are at the same place in the infinite-time limit, and the correlation fun€tfon representing the
disorder-averaged probability density that two particles of the thermal packet are at a disteoroeeach
other. We, moreover, prove that our results ¥rand C(l) exactly coincide with the thermodynamic limit
L—oo of the analog quantities computed for independent particles at equilibrium in a finite sample ofllength
So even if the Sinai dynamics on the infinite line is always out-of-equilibrium since it consists in jumps in
deeper and deeper wells, the particles of the same thermal packet can nevertheless be considered asymptoti-
cally as if they were at thermal equilibrium in a Brownian potential. Finally, we discuss the properties of the
finite-time metastable states that are responsible for the localization phenomenon and compare with the general
theory of metastable states in glassy systems, in particular as a test of the Edwards conjecture.
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[. INTRODUCTION independent of the thermal noige such that the distribution
P:(y) of the relative distancg=x—m(t) averaged over the
The Sinai model[1] of a particle diffusing in a one- realizations of the disorder converges in the limit o to-
dimensional quenched random force field is one of the simwards a probability distributioPs(y) defined as the follow-
plest example of a model with quenched randomness. Itsg functional

continuum version is defined by the Langevin equation
efr(‘w)

dx(t) , Paly)= - . ©)
—50 =YX+ (D (1) fo dte- "0+ fo dier®

{r.p}
where 7z(t) is the thermal noise, with correlation
(n(t)n(t"))=2Ts(t—1"), and where the random potential
U(x) is a Brownian motion presenting the correlations

where((- - -)) denotes the average over the two independent

Bessel processdge., the radial parts of free Brownian mo-

tions in three dimensignr(t) and p(t) starting atr(t=0)

@) =0=p(t=0). (The explicit computation of this functional is
done in Appendix D of the present paper.

As a result, the Sinai diffusion exhibits a nontrivial ultraslow . I-Ilov;/ﬁvtert,hthe eX|ste|;lce fOftrt]h's I'md't d|str|bgt|on doe_s not
logarithmic behavior, the walker typically moving as imply that the moments of the random variahleremain

~(Int)2. Although this model has been much studjdcB— finite in the limit of infinite time. And indeed, all the integer

5], the known analytical results mainly concern the rescaled’oments of the relg.tlve d|star?<{e<—<x'(t))] tp t.h? ther-
variableX=ox/(T2In?), and its distribution over the disor- mally averaged positioix(t)) diverge in the infinite-time

der realizations, known as the Kesten distribution. Howeverl,imit’ with the following leading divergencg? 8.

another important issue concerns the thermal distribution of

the position in a given sample. mN l(T Int)2n-1, ()
Golosov[2] has discovered the important phenomenon of o"

localization in the sense that all thermal trajectories starting

from the same initial condition remain within a finite dis- where(---) denotes the thermal average ovey(t)} and

tance of each other even in the limit of infinite time. More where -~ denotes the disorder average over the random

precisely, he has proved that there exists a prooe@$, potential{U(x)}. This happens because the decay of the dis-

[U(X)—U(x")]?=20]x—x'|
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tribution of z=x—(x(t)) is algebraic at large distance as e~ BUX)
1/2|%2[8,7]. Forn=2, the behaviof4) has been measured pri) = . (10)
numerically in Ref[9]. f dye AU

Other quantities characterizing the localization of the ther- 0

mal packet are the localization parametégét) representing

the disorder averages of the probabilities tkatdependent More precisely, it is interesting to compayg(=) [Eq. (8)]
particles in the same sample starting from the same initiahknd C(I,) [Eq. (9)] with the thermodynamic limit of their
condition are at the same place at titnén a given environ-  statics counterparts

mentU(x) and for a given initial conditiorxy, the probabil-

LA € . L
ity distribution over the thermal noise V9= fim fo dx—[pfq(x)]k, (11)
P(X,t]X0,0) =( (X = X{, %0} (1)) (5 Lo
[wherex{,%uyxo}(t) is the solution of the Langevin equation ceY(1)= lim defody—qu(x)pﬁq(y). (12)
(1)] satisfies the Fokker-Planck equation L-xJO 0
9P (X,t[X0,0)= —HepP((X,[X0,0)), (6)  Some statistical properties of the Boltzmann distributib®)
, have already been studied in Ref$1-13.
Hep=— dx(Tdx+U' (X)) @) In this paper, we reconsider this question of the localiza-

tion of the thermal packet from the point of view of the
real-space renormalization groRG) analysis detailed in
Ref. [7]. Within this renormalization picture, at tinte any
fo particle starting from an initial condition belonging to a
Yk(t):J dx[ P(x,t]x0,0)1%. (8) renormalized valley will be typically at timé around the
- minimumm(t) of this renormalized valley. To study the dis-
. tribution of a thermal packet, a first step is to consider that
In Ref.[9], the parametel,(t) has been measured numeri- \he particles of the packet are at Boltzmann equilibrium
cally for a version of the discrete Sinai model in a semi-y;ithin the renormalized valley they belong to at timd his
infinite geometry with binary distribution of the random ;s oniy an approximation at finite time, since there are also
forces. This simulation shows tha(t) converges at long  gqgitional out-of-equilibrium situations for the thermal

and the initial conditiorP(x,t— 0|Xq,0)— 8(X—Xg). So the
localization parameters read

time towards a finite valuer,(-), which decays ad in- acket[7]. However, in the limit of infinite time, these out-
creasegsince the temperature broadens the distribution Opf_equilibrium situations have vanishing probabilf], and
the thermal packet the joint distributionP..(y,u) of relative positiony=x(t)

A generalization ofY,(t) is the correlation function —m(t) and relative energyu=U(x(t))—U(m(t)) corre-
C(l,t) representing the disorder average of the probabilityshonds to an average of Boltzmann distribution over infi-
that two independent particles in the same sample startingite|y deep Brownian valleys. We will compute explicitly
from the same initial condition are at a distandeom each P..(y,u) by a path-integral method. We use the same method
other at time, to compute theY, () parameters8) and the correlation
. function C(1) [Eq. (9)]. On the other hand, we computg*
C(I,t)=2f dX[P(x,t|X0,0)P(x+1,t[x0,00], (9  andC®Y(l) [Eq.(12)] and find that they indeed coincide with

— Y () and C(l,»). This shows that the ensemble of infi-
nitely deep valleys gives the same results for the quantities

. . . + o0 _
which is normalized tg “dIC(I,t)=1. mentioned above as the thermodynamic limit of the en-
Another question related to the distribution of the thermalgemple of finite-size valleys, so that quasiequilibrium in Si-

packet is the dynamics of a given particle between two timeg,a; giffusion and equilibrium in a Brownian potential are
t, and ¢, +7) in the “quasiequilibrium regime”t,—o equivalent.

yvith finite 7 [8]. It was _conjectured and checked_r_lumerically This approach to the localization phenomenon allows us
in Ref. [8] that the disorder-averaged probabili®(z,7)  to study in details the disorder-dependent structure of low-
=lim;, ..Q(zty+ 7ty), of the relative displacemenz  energy eigenstates of the Fokker-Planck operator. Our results
=x(t) —x(ty,), for the Sinai model on the infinite line was are consistent with the features discussed in Appendix B of
the same af.(z,7) obtained as the thermodynamic limit Ref.[14] for the related model of one-dimensional random-
L—x of Q. (z,7) characterizing the equilibrium dynamics hopping Hamiltonian for fermions.

in a finite sample of length.. In particular, in the larger Finally, it is instructive to recast Sinai diffusion into the
limit, one should recover the statics with two independentgeneral theory of glassy systems. Indeed, in the studies on
particles at Boltzmann equilibriu8]. If these assumptions slowly relaxing systems such as glasses, granular media or
are true, this means that for the particles of the thermal packdisordered spin models, it is natural to separate the dynamics
ets, we should also have a correspondence with the Boltdnto two parts: there are “fast” degrees of freedom that rap-
mann distribution in a Brownian potential on finite sample ofidly reach local quasiequilibrium plus a slow nonequilibrium
lengthlL, part. At a given long-time, the fast motion covers a region

+
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of phase space which can be defined as a metastable statéh special emphasis on the successive levels of approxima-
associated with time [15]. In Sinai diffusion, this picture tions.
directly applies: the metastable states are the renormalized
valleys, within which there is a local Boltzmann equilibrium.
Moreover, we obtain that the metastable states satisfy all the
properties of the constructiofil6] as summarized in Ref. Recently we have proposed an approach, based on RSRG
[15]. In glassy systems, the Edwards ergodicity conjecturenethod, which allows us to obtain many exact results for the
[17] consisting in computing dynamic quantities by taking Sinai model[6,7]. The way to implement the RSRG is very
flat averages over metastable states has given rise to a lot @frect: one decimates iteratively tisenallest-energy barrier
recent studie$15,18—-21. Since Edwards conjecture is usu- in the system stopping when the time to surmount the small-
ally based on the assumption that all the basins of attractiogst remaining barrier is of order the time scale of interest.
of the various metastable states have the same B5ieitis  pegpite its approximate character, the RSRG yields for many
of course a very strong hypothesis that cannot be true igantities asymptotically exact results, because the iterated
general but only for special systems with special dynamicgisyripution of barriers grows infinitely wide. Indeed, the dis-

[18,2]]. In Sina_li diffusion \_Nith uniform initial conditi_on,_the tribution of the rescaled barrier height=(F—T')/T con-
size of the basin of attraction of a metastable state is given b\Yerges towards the fixed point

the spatial length of a renormalized valley: it is thus a ran-
dom variable whose distribution is exactly known. As a con- P*(5)=6(n)e" ", (13)
sequence, Edwards conjecture cannot be true in general.

Nevertheless, within the real-space RBSRG approach
[7], all one-time quantities are effectively computed by av-
erages over all metastable states, but with a measure that is

not flat, but depends on the quantities and on the properties [=Tint (14)

of the basins of attraction. So the RSRG approach of the

Sinai model represents the simplest example where the dys the renormalization scale associated with the time
namical study of a glassy system can be faithfully replaced Within this renormalization picture, at tinteany patrticle

by an average over a set of well-specified metastable statestarting from an initial condition belonging to a renormalized
with awell-de.fined measure. However, for spgcial quanpitie3ya||ey (F1,F,) will be typically at timet around the mini-
Edwards conjecture can be recovered. For instance, in thislum m(t) of the valley. This simple approximation, called
paper, we compute the probability distributiéh,(y,u) of  «effective dynamics”in Ref[7], is sufficient to obtairexact

the thermal packet, the localization parametéé=) [EQ.  expressions for many quantities, such as for instance the
(8)] and the correlation functio©(l,2) [Eq. (9] as flat Kesten distribution of the rescaled variablex
averages over infinitely deep wells. This is because in the_ ox(£)/(T21n2).

infinitely deep valleys, the statistics of the lower-part of the However, for other quantities, we have already obtained

Brownian valley is the same for all metastable states. in Ref. [7] that there are differences between the effective

The paper is organized as follows. In Sec. Il, we explain . ) ; )
within the RSRG picture why the distribution of the thermal dynaml_cs and the real dynamics. For instance, per_5|stence
roperties of the thermal average(t)) are well described

acket is asymptotically given by an average of Boltzman ) . ; i .
P ymp y 9 y 9 y persistence properties of the effective dynamics consist-

distribution over infinitely deep Brownian valleys. In Sec. ¥ P~ : :
Ill, we use a probabilistic path-integral method to computelnd N jJumping between valley bottoms but are very different

explicit expressions for the joint probability distribution from the persistence properties of a single walkér
P.(y,u). We use the same method to compute the probabil-
ity distribution of the partition function of an infinitely deep B. Boltzmann equilibrium within renormalized valleys

valley (Sec. IV), the localization parametel§() (Sec. V, To study the distribution of a thermal packet, we clearly

and the correlation functio(l,) (Sec. V). In Sec. VI, . . : ;
we consider equilibrium functions in finite samples and com-"€€d t0 go beyond the effective dynamics. A first step is to

pute YE% and C*%(1) [Eq. (12)] that are found to coincide cqn§ider that the particles of the packet are at equilibrium
with Y, () and C(I,). In Sec. VIII, we derive explicit Wlthl.n.the rgnormahzgd v_alley they belong to at timé&lore
expressions for the eigenfunctions of the Fokker-Planck op€XPlicitly, this approximation which assumes that the walkers
erator. In Sec. IX, we discuss the properties of metastabl@'® at Gibbs equilibrium §eparately in each renormalized val-
stables and compare with the general theory of metastablgys at scald’, can be written as

states in glassy systems. Finally, the Appendices A, B, and C

A. Effective dynamics at large times

where

contain technical details used in the text, whereas Appendix P(xt|x00):2 ie—ﬁu(x)gv (X) 6y (Xo), (15)
D shows that our result foP..(y,u) after integration oveu Vi L r r

coincides with the explicit computation of the Golosov func-

tional (3).

where the sum is over all the renormalized vall&js that
are present in the system at the renormalization s€ale
=T Int, and whered,,(x) is the characteristic function of the
valley V, i.e., 6y(x)=1 if x belongs to the valley and

In this section, we briefly recall the principles of the real- 6,(x)=0 otherwise Z,= [dxe #Y® represents the Bolt-
space renormalization group approach to Sinai diffu$in zmann normalization over the vallay

Il. REAL-SPACE RENORMALIZATION GROUP FOR THE
SINAI DIFFUSION
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This Boltzmann equilibrium is clearly an excellent ap- equilibrium situations, and within the lower part of the renor-
proximation within the lower part of the valley, i.e., for the malized valleys, i.e., for the points that are at a finite
points that are at a finite potential above the minimum of thepotential above the minima of the valleys. This approxima-
valley, which have had plenty of time to equilibrate. How- tion breaks down for the higher parts of the valleys, i.e., for
ever, it breaks down further away in the higher part of thethe points that are at a potential of ordeabove the minima
valley, for the points that are at a potential of orfleabove  of the valleys, and whenever the thermal packet happens to
the minimum of the valley, since these points need a time obe in an out-of-equilibrium situation like the everity and
ordere®" ~t to equilibrate. However, since these points have(c) described above which appear with probabilit} 1For a
a weight of ordee™#!" in the formula(15), they do not play  detailed study of systematic corrections to this approxima-
any role for the observables computed in this paper in théion, and further results, we refer the reader to Fi§R2&}.
limit I'— oo, From now on, in this paper, we will restrict our attention

More importantly, the approximatiofil5) breaks down to the approximatioril5) that becomes asymptotically exact
whenever out-of-equilibrium situations occur for the thermalin the limit I'—c. Indeed, in this limit, only the points that

packet as we now explain. are at a finite potential above the minima of the valleys keep
a finite weight and all the out-of-equilibrium situations have
C. Out-of-equilibrium situations for a thermal packet a vanishing probability in the limil'— 0. As a consequence,

the Boltzmann distribution over an infinite-deep valley ex-

In our previous work7], we have already described rare actly describes the asymptotic dispersion of a thermal packet.

events where deviations from the effective dynamics shovm - : -
. ore explicitly, the disorder average..(y,u) of the joint
up. The most important rare events are of orddr dnd are Probability distribution of the relative positiory=x(t)

of three types as shown in Fig. 7 of Ref. 7. In the events of : _ i \
type (a), there are two nearly degenerate minima at thermall,em(t) and the relative energy=U (x(t))—U(m(t)) with

equilibrium separated by a barri€y<<I". These events$a)
are thus taken into account well by the Boltzmann equili
rium in each renormalized valley described in the preceding e Ausu—U4(ly]))
section. The rare events) where two tops are nearly degen-  p_(y,u)= — i
erate are on the contrary completely out of equilibrium, since J dxe BY10) 4+ J dxe BY2(:)

the thermal packet will be split in two valleys that are not at 0 0 (Uy.U.)
equilibrium with each other. Finally, the everits where the v 2(16)
valley is being decimated are also out-of-equilibrium events,

since the two renormalized valleyslatcannot be considered where the averagé - -) is over two independent Brownian

to be at thermal equilibrium. All other rare events are Oftra'ectoriesu (x) andU,(x) forming an infinitely deep well
higher order, for instance, the probability that the initial point. J L 2 g y p W&

is near a top, which will also produce an out-of-equilibrium ![r:aat ?hrefmn?irr:?rillljznig](\:?"g%/ tquethvealllltranlfgﬁé:gitgo:ﬁehﬁwrgst
splitting of the thermal packet, is of order’®/ y rep

probable position in each samplee., it is the point where
the probability is the biggekstbut not the thermally averaged
position(x(t)).

As a conclusion, the expressigh5) is an excellent ap- Using, the same notations, we obtain the infinite-time
proximation for the thermal packets that are not in out-of-limit of the localization parameterg, (=) [Eq. (8)]

spect to the minimunim(t),U(m(t)] of the valley is
b_given by

D. Conclusion

oo e~ BYL(y) K
Yk(oo):j dy T o : (17)
- f dxe_ﬁul(x)_|_ f dxe_BUZ(X)
0 0 {Ulvuz}
and of the correlation functio(®)
- | 0 e BU(y)—BU1(y+])
C(l,OC)=4f dy[Pm(y)Pm(y+|)]+2f dy[Pw(l—y)Poc(y)]=4f dy = > 2
0 0 0 J dxe—ﬁul(x)+J dxe BY2(x)
0 0
e BU1(Y)—BUL(I-y)
(18)

|
+2f dy — "
° ( [Taxe o |

0 2
dxe” BU,(x)
0 0
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We now turn to the explicit computation of these expres-the final potentialu=1"—¢ in the limit e—~0 and to sum

sions.

IIl. PROBABILITY DISTRIBUTION FOR THE THERMAL
PACKET

A. Expression of P, (y,u) in terms of path integrals

To define more precisely the average -) [Eq. (16)]
over two independent Brownian trajectoriés$;(x) and
U,(x) forming an infinitely deep wellet V- be the set of
Brownian pathgU(x=0)} starting atJ(0)=0" in the pres-
ence of absorbing boundaries at 0 dndand that are con-
ditioned to finish atJ=T" and not alU=0. The formula(16)
is thus defined as

e P18(u—U4(ly))

@
f I gxeAY209
0

P..(y,u)= lim
Foe\ | T gxe U104
0

(19

whereU 1(x) andU,(x) are two independent Brownian tra-
jectories belonging to/ and wherel{!) and I{?) are the
random times wher& ;(x) andU,(x), respectively, first hit

x=T" where they are killed. Since the expression is symmet- +oo

ric in y— —y, we will assumey>0 from now on.
To separate the averages olbrandU,, it is convenient
to exponentiate the denominator to get

P..(y,u)= lim Rp(q)Sr(y,u,q), (20)
I'—ow
where
|2
Rr(q)z<ex —qf' dx e AY200 (21)
0
{U,}
and
Sr(y,u,q)5<e'Bué(u—Ul(Iyl))
|1
X ex —qfr dx e AY1 . (22
0 {Uq}
We now define the path integral
Fror (Ul —JU(HDU 1f|d du)®
ory(u,lug)= 001 (x)ex ~ 7o) ax
|
—qfodxe—ﬁuw Opr{Ul (23

where O r{U(x)} means that there are absorbing bound-

aries atU=0 and atU=1I". The explicit computation of this

over the random timé representing the random tirﬂéz)
whereU,(x) first hit x=T" where it is killed. So we have

oo 1
Rr(q)zj\/(r)fo dilim=SForT—elle) (24

e—0€

up to a normalizatiooV(T") that ensureRr(q=0)=1. The
result for Rp(q) is given in Eq.(B25) of Appendix B that
yields in the limitI"—oo,

1
Ro(Q)=———r.
2 /g
'o(g\[a)

Similarly, to compute Eq(22), we need to compose two
path integrals of typé23), the first one going from the initial
potentialuy= € to the final potential in a timey, and the
second one going from the initial potentialto the final
potential ' — € in a time | representing the differencé{{’
—vy) that we have to sum over, so that we have

(25

1
dl I|m—2
e—0€

Sr(y,u,q)=MI)e P! ;

XF[Ovr](r_€,||U)F[0’F](U,y|€). (26)

The Laplace transform with respectymf this expression is

given in Eq.(B30) of Appendix B which yields in the limit

I'—>o

ém(p,u,q)zfo mdye‘pySr(y,u,q)

- ’% pu! V(ls::(‘s‘;“’z) ( Ko(se Pu2)
where
s= %\/g, (28
y= %\@ (29)

B. Final result for the joint probability distribution P (y,u)

Using the result$25) and (27), the Laplace transform of
the probability distributiorP..(y,u) [Eqg. (20)] may now be

path integral is done in Appendix B and yields the final resultexpressed as

[Eq. (B18)].
To compute the quantity21), we need to consider the
path integral(23) going from the initial potentiali,= € to

B.(p.u)= fo “dye PPy, (30

066129-5
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=f0 dqR.(q)S..(p,u,q)

=,8e‘[’“f dss
0

><Iy(sefézg)

lo(s)1,(s)
Ko(s ) s

T s 0%e M))'

In particular, the distribution of the energyalone reads
(taking into account the two sidgs>0 andy<0)

(Ko(se pui2)

31

P.(u)=2P.(p=0u)

s —Bu/z
=2Be A dsle(S(—))(K (se P2
0
Ko(s) i
| (S) 0( ﬁ /2)) (32)

whereas the distribution of the position alone has for
Laplace transform

~ +OC ~
Poc(lo)Ef0 duP..(p,u)

o ds s
2], sism M

K
Ko(2)— %'o(z))- (33

The Laplace parametgris present only through the index
v=(2/B)\/p/ o of the Bessel functio, .

The normalization toP..(p=0)=1/2 for the half space
can be checked using Eq#7) and(A10). Using Eq.(A15),
we may expand irv as follows:

. 1 2 (= Ki2
P.(p)= 5—§Vf dzzlj(Z)JrO(vz) (34)
E_%\[f dzz +O(p) (35)

This shows that the probability distributid®,.(y) exhibits
the power-law decay

2T (= Kg(z)

3malo " lo(2)

making all the integer moments diverging in the lirpit .

w(y)\w% ly[3? ) (30

The exponent 3/2 is of course related to the probability of

return to the origin of a random wall,7]. Indeed, the Bolt-

PHYSICAL REVIEW B5 066129

at large distance as #?Y. However, in rare configurations
where the random potentidJ(y) happens to be near the
origin U(0) aty, which happens with probability #72, then

the Boltzmann distribution has a weight of order 1 yat
These rare configurations entirely dominate the disorder av-
erage for largey and are responsible for the power-law decay
[8,7].

IV. DISTRIBUTION OF THE PARTITION FUNCTION
OF AN INFINITELY DEEP VALLEY

The partition function of the valley can be decomposed as
the sum over two independent half valleys

ZOCEJ'“Cdxe*'Bul(X)nL fmdxe*ﬁu'z(x). (37)
0 0

Using the result25) for Rp(q) [Eqg. (21)], we obtain that its
probability distribution has for Laplace transform

It is convenient to introduce the rescaled partition function

Jo+ dze 9P, (2)=R2(q)= (39

Zoc
7=—, (39
I
where
4T2
ly=—o (40)
g

represents the thermal length associated with the typical
scale of the extension of the Boltzmann distributerf"®
in a Brownian wellU(x)~ o/X.

The probability distributionp(z) of the dimensionless
partition functionz has for Laplace transform

fowdze‘qu(z): (41

1
15(\a)
The series expansiofA3) shows that all the positive mo-
ments are finite. The leading behavior at lame indeed
given via Laplace inversion by the first paig= —si on the

negative real axis, wherg, is the first zero of the Bessel
function Jy(s;) =0,

p(z) ~ 267512, (42
Z— 0
The behavior of Eq(41) at largeq,
+ o0 —
f dze 9%p(z) = 2m\/qe 2, (43
0

q—o

zmann distribution in a renormalized valley typically decaysleads to the following essential singularity at snll
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p(z) ~ iefl’z- (44)
70 Z5/2

V. LOCALIZATION PARAMETERS

To compute the localization parameteéfg«) [Eq. (17)]
we proceed along the same lines,

+oo 1 +oo 3
Yk(<><>)=2Jo dymjo dad *R..(q)

(1)
X lim <ekﬁu1(y)ex;{—qjlr dxe AY1()
0

T —o

>{U1}

(49)

2 [+
— k—1 H

I —oo

r 1. ~
Xf dueik'Bu"m_zF[O’r](F_E,||U)F[0'F](U,O|€).
0 e—0€

(46)

Using again the resulB18) for Fyor; we finally get

2 BZ k=1 rop -
Yk(w):W(TU) fo dzZ“KZ(z)

_ Val?(k)
2r

B_Z )kl_ FS(k)

i Tk (B

k5

(47)

where we have used again E¢gA7) and (A10).

PHYSICAL REVIEW E65 066129

This shows that the behavior at largef the averagey, is
dominated by very steep valleys having a small partition
function z.

Here we need to make some comments about the relation
with the discrete Sinai model with lattice constamtFor
most quantities, the results obtained for the continuum ver-
sion correspond to the universal limit where the lattice con-
stanta is very small as compared to the thermal length
~1/(c8?) [Eq. (40)] representing the typical extension of
the Boltzmann distribution in a Brownian well. For instance,
this is the case for the probability distributi®®,(y,u) of the
thermal packet and for the correlation functi@fl,«). For
the localization parametels,, however, our result indicates
that the dimensionlesg, parameters of discrete models will
behave as

k—1

2
JaT3(k) | 0

1
)

ygiscrete(oc): E

2r 5

whenk is fixed, in the limit where &/1¢) is small. But for
fixed (a/l+), there is a maximal valule,, 5, beyond which the
result above does not apply anymore and is replaced by a
nonuniversal behavior. Indeed, the discrgteare by defini-

tion smaller than 1. And as explained above, the ldge
behavior of Eq(47) is related to very steep valleys having a
small partition functiorz, i.e., involving a small number of
sites in discrete models, so that all details of the model will
be important to determine the larg& behavior of
yglscrete(m)_

Note also that in the opposite regime where the lattice
spacinga is not negligible with the thermal lengthk (i.e.,
a~I|tora>ly), there is only a small number of sites that are
really important around the minimum of the valley so that
the discreteness and details of the model will again be very

The increase ofY, at largek is a consequence of the important. For instance, the behaviors of the localization pa-

average over the disorder, and can be understood by consiggmetersy, (=) at zero temperature are highly nonuniversal
ering the averaged probability, to havek particles at the and depend on many details: in REF], the binary distribu-
minimum of the valley(instead of at the same place but tion of the random forces induces a lot of minima degenera-
anywhere in the valley fov,), which is exactly given by the cies separated by barrier of two bonds that can always be
negative moment of ordérof the partition functiorZ.. [Eq.  passed even in the the limit of zero-temperatinecause the
(37)] particle is not allowed to remain on the same site betwieen

and t+1). Assuming that all degenerate minima have the
Ve | = —J+deP @)= =2 (1)
Az Jo TTTT e Ty

same weight, the value of,(«) at T=0 is found to be
For largek, the dominant behavior comes from the the small

(In2)/219], instead of the 1 one would expect if there were
no residual fluctuations &t=0 around a single minimum.
z behavior(44) of the probability distribution, which yields
- 1\X
Yk -~ (_) F

K—s o0 |T

Kpw g2kl
J ds——.
0 15(s)

(48)

VI. CORRELATION FUNCTION

To compute the correlation functio@(l,) [Eq. (18)],
we decompose it into

. (49

k5
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(2)
> <e_BU2(|_y)ex%_qJ|F dxe_BUZ(x) >
{Ug} 0 {Uy}

% (1)
> f dy<eﬁu1(y)ﬁul(yﬂ)exp{_qf'rldxeﬁul(x)> ,
Uy ° ° Uy}

* ! (1)
C(l,)=lim ZJ dqu dy< e—ﬁUl(y)exr{_qJ'r dxe BY10)
0 0 0

-

© (2)
+ lim 4f dqq< ex;{ _qflr dxe BY20
| T 0 0

(51)

which yields in Laplace transform with respectlto

. +o @ r +o 2

C(p,oo)zf dle P'C(l,)=2| dqqlim U d”f dye”ySr(y,u,q))

0 0 o\ JO 0
@ . r r . 1., A
+4J1) dqqR.(q) lim MT) . dUle_Bulfo dUze_BuzF[o,r](Uz-mUl)||m—2F[o,r](F_610|U2)F[o,r](U110| €).
I—ow e—0€

(52)

Using the previous resul27) and the expressio(B18) disorder, and is very different from the decaym‘f“‘Fr char-
for |‘:[O r. we finally get after simplifications acterizing the typical correlations. This is thus an explicit
' example of the important differences that exist in disordered

A te systems between typical and mean correlat .
Eipe)=8] dzzlz)Ke(z) y P ey

o VII. COMPARISON WITH EQUILIBRIUM FUNCTIONS
xf dz,2,K (2,)Ko(2), (53 IN LARGE SYSTEMS
I

In this section, we consider the Boltzmann equilibrium
where againp only appears in the index [Eq. (29)] of  (10) on a finite system of length to see if, in the thermo-
Bessel functions. dynamic limitL— oo, we recover the same properties for the

Expansion inp yields[Eq. (A15)] thermal packet as in Sinai diffusion on the infinite line. Some
statistical properties of the Boltzmann distributid®) have
- p already been studied in Refel1-13, where in particular
Clp,=)=1- E\[E’L O(p). (54) the degay of correlations was shown to be alget?raic with the
exponent 3/2, for the same reason as discussed above after
This smallp behavior shows tha€(l,«) presents at large Eq. (36). The Y;% have already been computed in REf3]
distance the same power-law decay with expori@/) as  for free and periodic boundary conditions, but they were
the probability distributiorP..(y) [Eq. (36)] found to be very different even in the thermodynamic limit
L—oo, whereas it is usually expected that for physical quan-
Cl,0) & — T (55) tities that remain finite in this limit, differences should van-
132\ me)’ ish. In the following, we compute the equilibrium functions
for both boundary conditions and find that they coincide with
making again all the integer moments infinite. As explainedeach other[i.e., the result(17) of Ref. [13] is erroneoub
after Eq.(36), this long-range algebraic decay of the meanThe thermodynamic limit is thus well defined and indepen-
correlation function comes from rare configurations of thedent of the boundary conditions.

A. Y;9 parameters at equilibrium

The Y parameters for free boundary conditions may be rewritten in terms of path integrals as

e kBUX)

L k
J dye_ﬁu(y))
0

_L o -1 - _ F(_ - —BY( ))
F(k)jo dqqk fo dx exg —kBU(x)]ex qfo dye Y
(57

L
yiree(L)= fo dx( (56)
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1 + o L + + o
=—J dqqk‘lj dxf duLf due *AG(u, ,L—x|u)G(u,x|0),
I'(k)Jo 0o )ox ,oo

where the basic path integrél is

u()=u 1 (L du BUM)|
G(u,l|u0)=ju(o)_u DU(y)ex —4Uf dy @y —qf dye”
—H0

It is analogous to the path integi@?3) except that here there
are no boundary conditions bt=0 andU=T", and the vari-
ableuis in ] —o,+0oo[. From a technical point of view, we

mention here that contrary to the previous woftd—13

that expand the path-integrdd9) upon eigenstates of the the
HamiltonianH = —d/du?+ qe Y, here we have chosen to

work in Laplace transform with respect to the lendtio

have a more compact resy1). Using Eq.(C1), we obtain

in Laplace with respect tb

~ o

YLree(w)EJO dLewaYLree(L)
2 B2\ K72 e -
F(k)("_> o 972

with

_2\/5
#=3\No

The thermodynamic limiL — is obtained as

lim[wY{®%(w)]

w—0

2\ k=1 r4 o
=%(Uﬁ—) JO dzZ<"KZ(z)

lim Y["®¢(L)=

L—o

—

_ V(K
__1)
r k+§

in agreement with Eq(19) of Ref.[13].

,82 k=1
_(,) |

We now consider periodic boundary conditions, and indi-
cate the modifications that appear. Taking into account that
the probability to havéJ (L) =U(0) is (1A/4mol), we have

in terms of the path integrdb9),

zds =ds 2
K“(Z)f0?|“(3)+|“(Z)JZ ?Kﬂ(s) ,

(60)

(61)

(62

(63)

(64)

(65)
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(58)
(59)
[
YEeriodlc V47TUJ dqq
L +oo
xf de due kAu
0 — oo
X G(0,L—x|u)G(u,x|0). (66)

So here, it is simpler to compute the following Laplace trans-

form
(w)Ef+dee_wL(W) (67)
Yk 0 \/E
8\m ( ﬁz)k‘l e
- i 22k 1
BoT (k) |74 fo dz
zd =d
Ki(z)fo?sli(s)ﬂi(z)fz ?SKi(s) . (68

The thermodynamic limit — oo is then obtained as

- Jo )
li periodic, =i
L[ank (L) wlino( Gyk(w) (69
/ 2 2 k—1
LR W (kl) (—ﬁ cr) , (70
2F(k+§

contrary to the erroneous result in EG7) of Ref.[13]. Our
result thus coincides with EJ65) concerning the equilib-
rium with free boundary conditions and with E@L7) con-

cerning the localizations parameters for Sinai diffusion on

the infinite-line.

B. Two-point correlation C®9(l) at equilibrium

Similarly, the two-point correlation for free boundary con-
ditions may be expressed in terms of the path-inte¢8l

066129-9
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L—1

c{fee(|):2f

0

+

L—I + o +o0 o0
= Zf dxf dqu dulj duye A1~ AUz
0 O — 0 — 00

so that in double Laplace with respectitandL we get

R + o0 L
Cfree(p,w)E fo dLefa)Lfo dleprCfLree(I)

32 [+

z;ds
= 2,241, (20)| K u(21) J ()
,820' 0 o S

>ds +oo
1z | Sk dazk,2)
1 1

X

2ds =ds
K,U,(ZZ) JO ?IM(S) +1 ,U,(ZZ) JZZ?KM(S)
(73

with »'=(2/B)\J(p+w)/o. The thermodynamic limitL
— s obtained as

lim C/"®¢(p)= lim

Lo

JOLdIe‘p'CL(I) (74)

Lo

= lim[wC™%(p,w)]

w—0

+
:8f0 dz;z41,(21)Ko(21)

N + o 0 +
PL(q)Ef dZe‘qZPL(Z)=f duOJ du,
0 —® Up
) ]
_qf dxeAlUe-ugl
0

U
®[u0,+w]{u(x)}fu(

®[u0,+w]{U(X)}'

) :
_ qf dxeAlUC—ugl
0

The change of functional(x) =U(x) —ug leads to

06612

L
J dxo
0
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+oo L-I +o0 L
pEpEcr 12 [ daa x| dacext~pux - puccrlexd —a [ aye )

(71)

jmduLG(uL ,L—x—1]uy)G(uy,l|u;)G(uy,x|0) (72
|

% | dzzK, 2Kz (79)

and thus coincides with the res@f3) for correlation of two
particles of the thermal packet in Sinai diffusion on the infi-
nite line. It is shown in Eq(C5) of Appendix(C) that peri-
odic boundary conditions also yield the same reif.

C. Probability distribution of the partition function
The probability distribution of the partition function,

L
Z = f dxe AU, (76)

0
has already been computed in R&¥4], but to compare with
our result(37) for the infinitely deep valley, we need to con-
sider the modified partition function

L
ZL:JO dxe_ﬁ[u(x)_umin]’ (77)

whereU i, is the minimum ofU(x) for 0Osx=<L. Using the
notations of Eq(23), the Laplace transform of the probabil-
ity distribution P, (Z) can be expressed in terms of path
integrals as

i 1 U(xo):u0+eDU( ) 1 JLd (du)Z
m— X)yexg — — Xl —=—
c0€2Ju(0)=0 40 o dx
(L)=uL DU 1 de (du)2

X)yexg — — X —=—
Xg) =Ug+ € 40 )9 dx

(78)

9-10



LOCALIZATION OF THERMAL PACKETS AND . ..

PHYSICAL REVIEW E65 066129

. f+w +oo L 1 (Vixo)=e¢ 1 (L [dV\?
P = d f d f dxglim— DU(X)ex ——f dx(—)
L(a) o Vo o UL o OEHOGZ viO)=vq (x) F{ 40, dx
L V(L)=v, 1 (L [dV\? L
-al, dxeﬁvm}@[‘“*]{“‘x)} Vicg=e DV(X)eX”[‘Efo ox{ g —a [ oxe 9]0 tucor a9
+ o +o L ) 1
:(Tfo dl)ofo dULjO dX0||m?F[Oerx](6,X0|U0)F[0y+°¢](l1|_,L—Xole‘), (80)
e—0

which yields in Laplace with respect to the lendthusing
Eq. (B19),

+ oo A
f dLe “*P.(q)
0

1 2
lim—

e—0

(81)

=0

Yoo
J;) dv F[O’+w](6,w|v)}

2

2 sdz
)J’()?I,u.(z) Ll

By

whereu has been defined in E¢62). Again, the thermody-
namic limit L—oo is obtained as

(82

P.(q)= lim

w—0

(83

+o R
wf dLe“’LPL(q))
0

(84
B

which coincides with the resul38) for the infinitely deep
valley. It is of course straightforward to generalize this com-
putation to obtain the result that the joint distribution
P..(y,u) [Eq. (31)] also coincides with the thermodynamic
limit L— of the finite-size joint distribution of X—Xin)
and U—U i), whereU ., is the minimum ofU(x) for O
<x=<L andX,;, is the position of this minimum.

D. Conclusion

The conclusion of this section is that the statistical prop-

erties of the thermal packet for the Sinai diffusion in the
infinite time limit exactly coincide with the thermodynamic
limit L—oo of the statistical properties concerning indepen-

to explore the consequences of this approximation for the
eigenfunctions of the Fokker-Planck operator.

A. Recall of some exact results

To discuss the properties of eigenvalues and eigenfunc-
tions of the Fokker-Planck equatidi), it is more conve-
nient to use the well-known transformation into an
imaginary-time Schidinger equation via the introduction of
the Green function

G(X,t|x0,0)=e P2V -Up(x t|x,,0), (85
which satisfies
3;G(X,t|X0,0) = —HsG(X,t]X0,0), (86)
He= -T2+ iu'(x)z— Eu"(x) , (87)
AT 2

with the initial conditionG(x,t|Xg,0)— 8(x—X). This is the
standard form for the Schdinger operatoHg associated
with to a diffusion process. It can be factorized Hg
=TQ'Q with Q=4,+U'(x)/(2T) and Q'=-4,
+U’(x)/(2T), and has thus a real positive spectrum. We
consider the case of a very large but finite system where the
spectrum of energieg,, is discrete. The Fokker-Planck op-
eratorHgp is non-Hermitian but has the same real positive
spectrum, with right and left eigenfunctiorrbﬁ(x) and
Cbh(x) associated wittE,,. They are related to the eigen-
functions y,(x) of the Schrdinger operator by

PR(x)=e VDY, (x), (88)

Ph(x)=e0 @My, (x), (89)

dent particles at Boltzmann equilibrium in a sample of size

L, with no dependence on the boundary conditions.

VIIl. LOCALIZATION PROPERTIES OF
FOKKER-PLANCK EIGENFUNCTIONS

As discussed in Sec. Il, the approximati@®) becomes
asymptotically exact in the limif — . It is thus interesting

The expansion upon Fokker-Planck eigenfunctions now
reads

P(xt|xg0)= >, OR(x)DL(xq)e Ent, (90)
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The ground-staten=0 has of course for energlf,=0 One sees that indeed the right-hand side has the nice prop-
and corresponds to the relaxation towards Boltzmann equierty to factorize into a function of and one ofx, and thus

librium so that the left and right ground state eigenvectorgne can determine unambiguousBi(x) and ®.(x,) by
are simply given by fixing the constant usingbR(x)=e Y™WdL(x) from Eq.
(1)'5(X)=l/\/z, 91) (89), which leads to the eigenset fae1,

_ - Zy 2y
dg(x)=e V0T Z,y, (92 BLO=\| 35
Vi SV,

whereZ,,,= fdxe Y™'T is the normalization over the finite

1

1
Z. Ov,(X) — Z, Ov,(x) |, (96)

large system. DR(x)=e VTHL(x). (97
B. Construction of an orthonormalized set of eigenfunctions One can check on Eq97) that the eigenfunctions have
for the approximate dynamics all the correct normalization and orthogonality properties.

In this section, we consider the approximatids) for the First, one has fon=1,

dynamics as defining a new dynamics denoted by tilde,
f dx®dR(x)=0. (98)

~ 1
P(xtlx0)=2 5—e #®ay ()b (xo) (93
Vi SVp This ensures the normalization of the probability distribution

and try to expand it upon a basis of eigenfunctions as in E I_D(xt|x00) for all t andx, as it should,

(90),
f dx”P(xt|x00):fdxcbf;(x)@g(xo)zl. (99

P(xt|xg0)= >, DR(x)DL(xq)e Ent, (94)
n Second, one finds the correct normalization

At time t, the states in Eq94) with energiesE,,> 1/t are - -
negligible in the sum, and correspond in the RSRG picture to f dx@h(x)@ﬁ(x):j dxe VO dr(x)]2=1.
bonds that have been already decimated. The statl (100
become negligible in the sul00) at a timet,~ 1/E,,, and
this disappearance in the sum corresponds, in the RSRG pic- Furthermore, one can also check that the set of wave
ture, to a decimation at scalB,=TInt,=—TInE,. The functions exactly forms an orthonormalized set

low-lying energiesE,, are thus exactly determined by the

large RG scaleE , at which decimations occur in the system. f dx®L(X)DPR(X) =68, m- (101

Of course in the real system, in the case of near degeneracies

of neighboring bonds, slight shifts in these levels will occur. . : . i
To determine now the eigenfunctions, we consider wha% So the disorder-dependent for(@7) for the eigenfunc

. L . ions have all the good properties to represent via the expan-
happ_ens upon this _demmatlon]é;. We may _con5|der that sion (94) the dynamics defined in Eq93). One may even
the time exponential factor associated with levelhas

- S . define the following effective Fokker-Planck operator
changed frome Enth =1 to e En'n =0 while none of the

others decaying exponentials in E§4) have changecsince
time scales are well separajedhe differenceIS(xt,; |X00)
—P(xt!|xo0) is thus equal tabR(x)DL(x,) On the other
hand, from the RSRG point of view, what happens is simplyas an approximation tblgp [Eq. (7)].

a decimation where two valley$, andV, have merged into

a single oneV’. Thus we get using Eq93), C. Qualitative properties of eigenfunctions

BRO)ODL(xg) = VT We can now discuss the typical shape of an eigenstate and

compare with the qualitative features discussed in the Ap-
pendix B of Ref.[14] for the related model of one-

HFP=§ E,|ORN(D] (102

% HVl(X) HVI(XO) n 0V2(x) 9V2(X0) dimensional random-hopping Hamiltonian for fermidiex-
Zy, Zy, cept that here there is no particle-hole symmetry and there is
no need to distinguish even and odd sites
0o (X)+ 6v OO (B (x2)+ 6y (X (i) An eigenstat€97) has two peaks corresponding to the
_ [ 2 : Vol NI 2 o val ol _ minima of valleysV,; andV,. The eigenstate has a significant
Zy,tZy, value in finite regions of order~T%/ o [Eq. (40)] around

(95) these two peaks.
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(ii) These two peaks are separated by a distance of ord@tus a “slow” nonequilibrium part. At a given long timg
I'’~(InE)% the fast motion covers a region of phase-space which can be

(iii ) Away from one of these bumps but within the valley, defined as a metastable state associated with tifhg]. To
i.e., for distancer<I'?, the decay of the wave function Sinai diffusion, this picture directly applies. The formula
®R(x) is governed by the Boltzmann facter V() that  (15) leads to a very direct identification of metastable states:
typically behaves ae™ . In particular, on the edges of the at timet, the metastable states are given by all the renor-
valleys whera ~T’2, this gives an amplitude of order©'", ~ malized valleysv{!) that exist at scal& =T Int. Moreover,

(iv) Beyond the involved two valleys, within our simple the formula(15) exactly corresponds to the cqnstrgctlon of
approximation(97) with ¢ functions on the edges of valleys, Gaveau, Schulman, and Lesfts] a_?Hsur_nmarlzed in Ref.
the eigenstate is simply zero. [15]_, where the evolution operat@ "FP is repla_ced by a

So to estimate the decay of the eigenstate for distancd¥0jector onto the subspace of staighaving an eigenvalue
r=I"2, we must take into account, as was in Appendix B of En<1A,

Ref.[14], the fact that the two points are typically separated
by a number/I"? of valleys, and that the overlap between e*tHFvaZ IP){Qil, (103
two neighboring valleys is not exactly zero but of order i

*C"F . .
© +And thus a perturbation theory yields that the decaywith the following identifications: the right eigenvectors read

Nr
for distances =T'2 behaves ag ¢ T. We thus recover that

the localization length in the sense of asymptotic exponential e~ BUM .

decay of the associated quantum wave function thus behaves Pi(X)= ——0(xe V%’) (104
as\(E)~T~(—TInE) whereas the typical extension of an dye AU

eigenstate behaves as the typical distance between the two vid

peaks, which behaves #E)~I'2~(—TInE)? and directly

gives the low-energy behavior of the integrated density ofand thus they have indeed the properties of being positive,
statesN(E)~11(E)~1/(—TInE)? [5]. We note that the normalized and not zero in nonoverlapping regions of space.
length | (E) is the one that appears in the averaged Greef he left eigenvectors read

function (85) as computed in Ref22] for the lattice fermion ,

model with random hopping, and computed in Réf| for Qi(x)=6(xe V{V). (109

the present problem.

So the disorder-dependent for(@7) for the eigenfunc- They are thus indeed one within the supportR{x), and
tions, even if only approximate near the edges of the valleyszero everywhere else. Moreover, the fast degrees of freedom
give a good insight into the properties of low-energy eigen-have indeed converged towards a local Boltzmann equilib-
functions. For a study of systematic corrections to this apfium within the metastable state represented by the renormal-
proximation, and further results on the statistics of wavezed valley(104).
functions far in the tails, we refer the reader to FisHg].

B. One-time dynamical quantities as averages over the set

IX. PROPERTIES OF METASTABLE STATES IN SINAI of metastable states at a given time

DIFFUSION . . .
We now consider the question of Edwards conjecture. In

In the slowly relaxing systems such as glasses, granuldsinai diffusion, within the RSRG approa¢i], all one-time
media or disordered spin models, the notion of metastablguantities are effectively computed by averages over all
states is an important and ubiquitous concept. In particularenormalized valleys, with a measure that is agriori flat,
the Edwards ergodicity conjectuf7] consisting in comput- but depends on the computed quantity. In particular, for a
ing dynamic quantities by taking flat averages over metauniform initial condition, the spatial length of a renormalized
stable states has given rise to a lot of recent stUdiBsl8—  valley exactly represents the size of the basin of attraction of
21]. However, as discussed in details in REE5], truly  this renormalized valley. So the rescaled size ol/T'?
metastable stables only exist in mean-field approximations oF o1/(T Int)? of the basins of attraction of the metastable
in the zero-temperature limit, and thus to use this concept atates is a random variable distributed with the probability
finite temperature in finite-dimensional systems, one needs tdistribution
consider metastable states with finite lifetimes. In this con-

text we find instructive to consider what happens in Sinai DM =P*(-)XP*(+), (106
diffusion from the point of view of metastable states and to . o
compare with the general theory of glassy systems. where P*(\) is the distribution of the rescaled length of

bonds[7]. More explicitly, its Laplace transform reads

A. ldentification of the set of metastable states
at a given timet

R . 1
n D(p)=[P*(p))P=—7F=
In the general theory of glassy systems, it is natural to COSH\/B

separate the dynamics into two parts: there are “fast” de-
grees of freedom which rapidly reach local quasiequilibriumand inversion yield$25]

(107)
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— < 2 1) —Am2(n+1/2)? K (Z)ZZM (A5)
D()\)—n;x 2% n+ 5| A-1le (108 » T
5 +oo The Wronskian property
— + -m?
_\/;—)\3/2 mzz_w (_1)m lmZe m /)\. (109) , I l
L (DK(D-1(DK (D)=~ (A6)
Since Edwards conjecture is usually based on the assump-
tion that all the basins of attraction of the various metastablgives
states have the same siZb], it is of course a very strong
hypothesis that cannot be true in general but only for special +oo 1 Ko(s)] ™" Ko(2)
systems with special dynami¢48,21]. In Sinai diffusion, L SSIZ(S) == Io(S) = Io(2) (AT)
the metastable states do not have the same size and thus 0 z
Edwards conjecture cannot be satisfied in general. PN )
However, for special quantities, Edwards conjecture can f”’ Ko(s) 1 Ka(s) _ Ka(2) A8)
be recovered. For instance, in this paper, we have computed z slI3(s) 2| 13(s) 214(2)°

the probability distributionP.,(y,u) of the thermal packet,

the localization parameteig () [Eg. (8)] and the correla- 2 Mg T
tion functionC(l,=) [Eq. (9)] as flat averages over infinitely erwdSKO(S) __LKe(s) ] Ko(2) (A9)
deep wells. This is because in the lirhit=, only the lower z slg(s) 3113(s) 3132)

part of the Brownian valley is important, and thus there is no ) o

dependence on the size of the valley for these quantities comnother useful integral is for ang>0,

cerning the thermal packet.

> VT 3(k)
k=125 —
C. Hierarchical organization of metastable states associated fo dzZ Ko(2)= 1\ (A10)
with different times 4T\ k+ >

In the case of Sinai diffusion, one knows much more than
the one-time description in terms of metastable states. In- Equation(Al) leads to
deed, the expressior{97) for the Fokker-Planck eigenvec-
tors contain in fact all the information on the changes in time el
of the set of metastable states. They have an obvious hierar- ds
chical organization: two eigenstates can be either disjoint or
nested(i.e., one is included in anotheAnd the evolution in
time is described by the RSRG procedure. This is why two- ds
time aging quantities can be computed within the RSRG
method[7,26].

=sl3(s), (A11)

s,
§{|o(8)—[|6(5)]2}

SZ
5 (K§(s) = [Ko(9)1?)

=sKj(s), (A12)

S2
7 [1o(8)Ko(8) ~To(8)Ko(S)]

ds
APPENDIX A: USEFUL PROPERTIES OF BESSEL

FUNCTIONS =slo(5)Ko(9). (A13)

The Bessel function$,(z) and K,(z) are two linearly

independent solutions of Differentiation with respect to order

— _ 2
ZZfII(Z)+ZfI(Z)_(ZZ+ Vz)f(Z):o. (Al) |V(Z)—|0(Z) VK0(2)+O(V ), (A14)
— 2
Series expansion inreads Ku(2)=Ko(2)+O(¥7). (A15)
o1 7\ APPENDIX B: EXPLICIT COMPUTATIONS
lo(2)= 2, AT (A2) FOR INFINITELY DEEP VALLEYS
k=0 (k1)2\2
1. Explicit expression for Fqpj(u,x|ug)
Ko (2)= — (2] z § P(k+1) (z|% A3 The path integraF o r(u,X|uo) defined in Eq.(23) can
o(2)==10(2) n§+k:0 (k1)2 2] (A3) be obtained via the Feynman-Kac formula. Indeed, as a func-
tion of the variables \,x), it satisfies the imaginary-time
and Schralinger equation
oo 1 v 2k oF=00’F—qe PUF (B1)
(D)= 2 T E) (A4)
Y k=0 KIT(v+k+1)12 ' with the initial condition atx=0,
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F(u,0)=8(u—ugp) (B2)

and the absorbing boundary conditionsuat0 andu=T",

F(0x)=0, (B3)
F(T',x)=0. (B4)
The Laplace transform with respectxp
~ +0C
F(u,p)=f dxe P*F(u,x), (B5)
0
satisfies the system
odiF —qe PUF—pF=—38(u—up), (B6)
F(0,p)=0,
F(T,p)=0.

Let us introduce two linearly independent solutiahg u, p)
and ¢,(u,p) of the equation.

odF—qe PUF—pF=0. (B7)

In terms of the new variables,

2 \ﬁ
— 1A= pBul2

z 3 Ue , (B8)

2 \ﬁ
=5\ (B9)

the equation becomes

?F"(2)+zF (2) - (Z2+v*)F(2)=0.  (B10)

Two linearly independent solutions of this equation are the

Bessel functions$ (z) andK ,(z), so we choose

2
d1(U,p)=1,(2) =125 @E( E\@G_B“Q) . (B11)

2 a —pBul2
$2(u,p) =K ,(2) =K (28) 575 g P , (B12
and the Wronskian of these two solutions reads

B

W= a(U) $(U) — ha(U) py(U) =7 (B13

We now introduce the function

1
E(u,v,p) = [¢1(u,p) $2(v,p) = $2(U,p) $1(v,p)]
(B14)

and express two solutions of E@B7) which vanish respec-
tively at 0 andI’ as

PHYSICAL REVIEW E65 066129

®_(u,p)=E(0u,p), (B15)

®_ (u,p)=E(u,I',p). (B16)
Their Wronskian reads

W(p)=®" (u,p)®,(u,p)—P_(u,p)®’, (u,p)

=E(0[L,p). (B17)

The solution of the systertB6) now reads

® _(min(u,up),p)® ,(maxu,uo),p)
aW(p)

~ E(0,min(u,up), p)E(max(u,uo),I’,p)
- oE(0T,p) '

'A:[o,r](U,p| Ug) =

(B18)

2. Explicit expression for R, (q)

Specializing Eq.(B18) to the caseup=€¢ andu=I"—¢
and expanding

E(0,e,p)=€e+0(€?), (B19)
E(I'—¢,I',p)=e+0(€), (B20)
we get
1. B
l:rrz)?F[o,r](F—e,p|e)— m (BZ].)
Then Eq.(24) yields
1.
Rl"(q):N(r)||m?F[0’F](F_E,p:O|6) (822)
e—0
__ MDD B23
~oE(OI',p=0)" (23

Using the expansionfA3) of Bessel functions, the normal-
ization conditionRr(g—0)=1 determines the normaliza-
tion

NMT)=o0T, (B24)
so that the final result reads
B
Rr(q)= 2
T (9K o(se 72— Ko(s)Ig(se A7)
(B25)

with s=(2/8)Jalo.

3. Explicit expression for Sp(y,u,q)

We now turn to the evaluation of E(R6) in Laplace with
respect toy
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c - L—I +o0
>r(p.u.a) CEE”O“'C(|):2MJ de daq
to 0 0
= “aye sy (B26) . y
0 xj dule‘ﬂulj du,e P2
1. .
:./\/(F)e_ﬁu“m (_ZF[OYF](F_ 6,0|U)F[o'r](u,p|6)) . XG(O,L_X_l|U2)G(U2,||U1)G(U1,X|O),
e—0\ €
(B27) (C2
Using which yields in Laplace transform
(1 E(u,I',p) . +oo L clee(l)
lim|—-F u, =——— B28 = —ol -pl| = 2
E_)()( < for)( p|e)) +E(OL.p) (B28)  c(p,w) fo dLe fo dle T (C3)
and _16V470

+:x:ds + o
— dz;z,1,/(z
E(0,u,0) Ba  Jo sJo 12l (21)

1.
|im(—F[O,F](r—e,o|u)) - — 7 (B29
eol € oE(0.L.0 XK o (20)1 ,(8) 823~ 8)+1 (200K (8) 65— 21)]

we get o
A B r 00 E(u.T,p) ><fZl dz,z,K,/(z;)
Sr(p!u!q)_ (TE(O,F,O)e ( U, ) E(O,r,p) .
(B30) X[K(Z2)1 ,(8) 0(Z, =) +1,(Z)K . (S) O(S— (22)])
C4
In the limit I'— o, using the expansion#5) we get
with w=(2/B)Jw/o and v'=(2/B8)J(p+ w)/o. The ther-
_[Eu,L,p)\  1,(2B)Jaloe P2 modynamic limitL— is obtained as
= (B31
r—-\ E(OI',p) 1,((21B)\al o) Jo .
~periodic, \\ _ i VA —
and C. (p) J}ITO \/;c(p,w) 8fo dzyzy1,(z1)Ko(zy)
i ( L ) ! (832 Fmd K,(zo)K (C5)
im = , X 2,2,K (z Z,).
I\ E(0I',0) 1o((21B) /q/(r) o 525K ,(22)Ko(22)
so that we obtain the formul@7) given in the text. APPENDIX D: RELATION WITH GOLOSOV THEOREM
APPENDIX C: COMPUTATION OF EQUILIBRIUM As explained in the Introduction, the theorem of Golosov
FUNCTIONS IN LARGE SYSTEMS [2] states thaP..(y) is equal toPg(y) given by Eq.(3). The

purpose of this appendix is to show this formula of Golosov

gives the same result as E§3) obtained in the text. We first
The Laplace transform with respectltof the basic path rewrite Eq.(3) as

integral (59) satisfies the same equation as EHf) but the

boundary conditions are now at— *. So using again the

e L
= |i — —Bp(t)
notations(B9) the solution readfEq. (B18)] Pa(y) JTL( jo dq<< exr{ qjo dte >>>{ .
P

. 2
G(u,plug)= -~

1. Basic path integral

(D1)

Ro << ex;{—ﬁr(y)—qJLdte‘Br(t) >> ) (D2)
0 n

XK, E\ﬁe(ﬁlz)min(u,uo))
B Vo Since the Bessel procesdest)} and{p(t)} may be con-
sidered as radial parts of free three-dimensional Brownian
_\ﬁe(ﬁlz)max(u,uo))_ (C1)
g

X1, motion, the Feynman-Kac formula yields
: Bp(t)
— —Bp
2. Two-point correlation C®%(1) for periodic boundary exp( qfo dte )
conditions {p}
~ For periodic boundary conditions, the two-point correla- = f+m47TRfd R Gp(RL,L|0), (D3)
tion may be expressed in terms of the path inte¢s8) as
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L
<< exr{ —,li’r(y)—qf0 dte A" >>
{r}

+ +
=f 47TREdRLf 47R?dR
0 0
X G4(RL,L—y|R)e #RG4(R,y|0), (D4)
equation
9Gq(R,1|Rg)=—HyG4(R,I|Ro), (D5)
where
He=— 2 7 [Re L) 4 gerom D6
9 R2JR\ " 4R qe (D6)
is the radial restriction of the corresponding three-
dimensional Hamiltonian. We have, moreover, the initial
condition
(D7)
The identity
1 9 2t of\ 1 &2 iy
2 RIRRI "R RP
leads to the change of function
9q(RI[Rg) =47RR,G4(R,I|Rp). (D8)

This new functiong, satisfies the one-dimensional Schro
dinger equation
@19q(R.I[Ro) = —

hng(R,||R0), (D9)

d2
hg=—0— +qe R,

= (D10

on the semi-infinite lineR=0 with the absorbing boundary
condition atR=0,
9q(R=0Jl|Rp)=0 (D11

and with the initial condition

PHYSICAL REVIEW E65 066129

9q(R1—0|Rg)— 8(R—Ry). (D12)

By comparison with Eqs(B1),(B2),(B4), we immediately
obtain

dq(RI[Rg) = lim Fior1(R,1|Ro). (D13
I —oo

Since the functiorG4(R,1|0) has to be obtained as the limit

1 (1
Gq(R,I|O)=§1|L‘nO ;gq(R,I|e) , (D14)
we have, using Eq$B9) and (A5),
<e*qf§dte"’(‘)>{p}
1
= lim dRRIlm( gq(R, L|e)) (D15
L—owd0 e—0
_lim| B f dRRI( \[ B(R/Z))
v—0 ( \/7)
(D16)
1
e (D17)

in agreement with Eq.25).
Similarly, we compute the Laplace transform with respect

toy
—+ oo + o
J dye_pY< e_Br(y)eXF< _qJ’ dte_ﬂr(t)) >
0 0

{r}

(D18)
= lim sf dRRf dR'g4(R,s|R)e R (D19
s—0 0 0
X lim —gq (R',ple) } (D20)
e—0

which gives the same result as E§7).
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